wav2vec2-large-xlsr-53-punjabi
This model is a fine-tuned version of Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10 on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2101
- Wer: 0.4939
- Cer: 0.2238
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-53-punjabi --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xlsr-53-punjabi"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "pa-IN", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
Cer |
11.0563 |
3.7 |
100 |
1.9492 |
0.7123 |
0.3872 |
1.6715 |
7.41 |
200 |
1.3142 |
0.6433 |
0.3086 |
0.9117 |
11.11 |
300 |
1.2733 |
0.5657 |
0.2627 |
0.666 |
14.81 |
400 |
1.2730 |
0.5598 |
0.2534 |
0.4225 |
18.52 |
500 |
1.2548 |
0.5300 |
0.2399 |
0.3209 |
22.22 |
600 |
1.2166 |
0.5229 |
0.2372 |
0.2678 |
25.93 |
700 |
1.1795 |
0.5041 |
0.2276 |
0.2088 |
29.63 |
800 |
1.2101 |
0.4939 |
0.2238 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0