File size: 3,367 Bytes
32a82f8 93ea753 5cc2c7e c7ad044 32a82f8 c7ad044 93ea753 c7ad044 32a82f8 c7ad044 32a82f8 c7ad044 93ea753 c7ad044 93ea753 c7ad044 93ea753 32a82f8 06f71f9 32a82f8 06f71f9 56f70dd 32a82f8 56f70dd 32a82f8 06f71f9 32a82f8 06f71f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
language:
- pa
license: apache-2.0
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-punjabi-V8-Abid
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0
name: Common Voice pa-IN
args: pa-IN
metrics:
- type: wer
value: 36.02
name: Test WER With LM
- type: cer
value: 12.81
name: Test CER With LM
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-punjabi
This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2101
- Wer: 0.4939
- Cer: 0.2238
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-53-punjabi --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xlsr-53-punjabi"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "pa-IN", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 11.0563 | 3.7 | 100 | 1.9492 | 0.7123 | 0.3872 |
| 1.6715 | 7.41 | 200 | 1.3142 | 0.6433 | 0.3086 |
| 0.9117 | 11.11 | 300 | 1.2733 | 0.5657 | 0.2627 |
| 0.666 | 14.81 | 400 | 1.2730 | 0.5598 | 0.2534 |
| 0.4225 | 18.52 | 500 | 1.2548 | 0.5300 | 0.2399 |
| 0.3209 | 22.22 | 600 | 1.2166 | 0.5229 | 0.2372 |
| 0.2678 | 25.93 | 700 | 1.1795 | 0.5041 | 0.2276 |
| 0.2088 | 29.63 | 800 | 1.2101 | 0.4939 | 0.2238 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|