wav2vec2-urdu / README.md
kingabzpro's picture
Librarian Bot: Add base_model information to model (#2)
c873842
|
raw
history blame
2.66 kB
metadata
language:
  - ur
license: apache-2.0
library_name: transformers
tags:
  - automatic-speech-recognition
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
metrics:
  - wer
  - cer
pipeline_tag: automatic-speech-recognition
base_model: Harveenchadha/vakyansh-wav2vec2-urdu-urm-60
model-index:
  - name: wav2vec2-urdu
    results:
      - task:
          type: automatic-speech-recognition
          name: Urdu Speech Recognition
        dataset:
          name: Common Voice (Urdu)
          type: common_voice
        metrics:
          - type: wer
            value: 57.47
            name: WER
            config: load_metric("wer")
            verified: true
          - type: cer
            value: 32.68
            name: CER
            config: load_metric("cer")
            verified: true

wav2vec2-large-xls-r-300m-Urdu

This model is a fine-tuned version of Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Wer: 0.5747
  • Cer: 0.3268

Model description

The training and valid dataset is 0.58 hours. It was hard to train any model on lower number of so I decided to take vakyansh-wav2vec2-urdu-urm-60 checkpoint and finetune the wav2vec2 model.

Training procedure

Trained on Harveenchadha/vakyansh-wav2vec2-urdu-urm-60 due to lesser number of samples.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
4.3054 16.67 50 9.0055 0.8306 0.4869
2.0629 33.33 100 9.5849 0.6061 0.3414
0.8966 50.0 150 4.8686 0.6052 0.3426
0.4197 66.67 200 12.3261 0.5817 0.3370
0.294 83.33 250 11.9653 0.5712 0.3328
0.2329 100.0 300 7.6846 0.5747 0.3268

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0