w2v-bert-2.0-nepali / README.md
kiranpantha's picture
End of training
afd6aae verified
metadata
library_name: transformers
language:
  - ne
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - kiranpantha/OpenSLR54-Balanced-Nepali
metrics:
  - wer
model-index:
  - name: Wave2Vec2-Bert2.0 - Kiran Pantha
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OpenSLR54
          type: kiranpantha/OpenSLR54-Balanced-Nepali
          config: default
          split: test
          args: 'config: ne, split: train,test'
        metrics:
          - name: Wer
            type: wer
            value: 1.0004629629629629

Wave2Vec2-Bert2.0 - Kiran Pantha

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the OpenSLR54 dataset. It achieves the following results on the evaluation set:

  • Loss: 10.8771
  • Wer: 1.0005
  • Cer: 0.9690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.SGD and the args are: No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
16.7814 0.1800 300 16.3800 1.0007 3.1059
16.2838 0.3599 600 15.8109 1.0005 2.9213
15.5569 0.5399 900 15.0093 1.0005 2.5754
15.0336 0.7199 1200 14.1309 1.0002 2.0061
13.9247 0.8998 1500 13.2986 1.0002 1.5023
13.1967 1.0798 1800 12.5663 1.0002 1.2076
12.4844 1.2597 2100 11.9662 1.0002 1.0769
11.8394 1.4397 2400 11.4978 1.0005 1.0134
11.4607 1.6197 2700 11.1599 1.0005 0.9855
11.2266 1.7996 3000 10.9534 1.0005 0.9733
11.0877 1.9796 3300 10.8771 1.0005 0.9690

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cxx11.abi
  • Datasets 3.2.0
  • Tokenizers 0.21.0