|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mbart-large-50-pluska-token-sum |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mbart-large-50-pluska-token-sum |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.2944 |
|
- Rouge1: 16.8143 |
|
- Rouge2: 5.2102 |
|
- Rougel: 14.3454 |
|
- Rougelsum: 14.7355 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| No log | 1.0 | 144 | 3.7149 | 17.1082 | 5.3773 | 14.6384 | 14.9023 | |
|
| No log | 2.0 | 288 | 3.4301 | 17.6442 | 5.7235 | 14.9728 | 15.3384 | |
|
| No log | 3.0 | 432 | 3.4951 | 17.491 | 5.5463 | 14.8284 | 15.2035 | |
|
| 2.9135 | 4.0 | 576 | 3.6706 | 17.1471 | 5.3419 | 14.6302 | 14.9667 | |
|
| 2.9135 | 5.0 | 720 | 3.9122 | 16.6979 | 5.1895 | 14.2909 | 14.6367 | |
|
| 2.9135 | 6.0 | 864 | 4.0815 | 16.5961 | 5.1915 | 14.2459 | 14.5916 | |
|
| 2.9135 | 7.0 | 1008 | 4.2448 | 16.7793 | 5.2088 | 14.3515 | 14.7136 | |
|
| 1.0097 | 8.0 | 1152 | 4.2944 | 16.8143 | 5.2102 | 14.3454 | 14.7355 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|