|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-sk-news |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-sk-news |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 8.7815 |
|
- Rouge1: 4.2262 |
|
- Rouge2: 0.4191 |
|
- Rougel: 3.9794 |
|
- Rougelsum: 4.0106 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 24.5955 | 1.0 | 13 | 14.1001 | 3.1611 | 0.5122 | 2.9982 | 3.0234 | |
|
| 21.452 | 2.0 | 26 | 12.4275 | 3.4559 | 0.5141 | 3.2461 | 3.256 | |
|
| 19.6974 | 3.0 | 39 | 11.2369 | 3.5799 | 0.5058 | 3.4025 | 3.4185 | |
|
| 18.2054 | 4.0 | 52 | 10.0774 | 4.0976 | 0.5831 | 3.8641 | 3.8412 | |
|
| 15.314 | 5.0 | 65 | 9.5101 | 3.9583 | 0.4948 | 3.7593 | 3.7337 | |
|
| 14.3465 | 6.0 | 78 | 9.0434 | 4.1681 | 0.437 | 3.8628 | 3.8584 | |
|
| 15.0109 | 7.0 | 91 | 8.8574 | 4.3665 | 0.5 | 4.086 | 4.1242 | |
|
| 15.2609 | 8.0 | 104 | 8.7815 | 4.2262 | 0.4191 | 3.9794 | 4.0106 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.1 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|