Uploaded model
- Developed by: kkkeee
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Guide Follow the steps below to perform inference with this model.
Step 1: Install Required Libraries
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
Step 2: Load Required Libraries
from unsloth import FastLanguageModel
import torch
import json
Step 3: Load the Model
Specify the base model and the adapter for LoRA fine-tuning. Replace and with appropriate values.
# Base model
model_name = "kkkeee/llm-jp-3-13b-it15"
# Hugging Face Token
HF_TOKEN = "<your_hf_token>" # Obtain token from https://huggingface.co/settings/tokens
# Load base model using Unsloth
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_name,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = HF_TOKEN,
)
FastLanguageModel.for_inference(model)
Step 4: Load Dataset
Prepare your dataset in .jsonl format and upload it to your environment.
# Load task data
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
Step 5: Perform Inference
Set the model to inference mode and generate predictions.
from tqdm import tqdm
# 推論
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示\n{input}\n### 回ç”\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
output = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回ç”')[-1]
results.append({"task_id": data["task_id"], "input": input, "output": output})
Step 6: Save Results
Save the inference results to a .jsonl file. Replace with the appropriate identifier.
with open(f"/content/output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for kkkeee/llm-jp-3-13b-it15
Base model
llm-jp/llm-jp-3-13b