Uploaded model

  • Developed by: kkkeee
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Inference Guide Follow the steps below to perform inference with this model.

Step 1: Install Required Libraries

%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"

Step 2: Load Required Libraries

from unsloth import FastLanguageModel
import torch
import json

Step 3: Load the Model

Specify the base model and the adapter for LoRA fine-tuning. Replace and with appropriate values.

# Base model
model_name = "kkkeee/llm-jp-3-13b-it15"

# Hugging Face Token
HF_TOKEN = "<your_hf_token>"  # Obtain token from https://huggingface.co/settings/tokens

# Load base model using Unsloth
max_seq_length = 2048
dtype = None
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = model_name,
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    token = HF_TOKEN,
)
FastLanguageModel.for_inference(model)

Step 4: Load Dataset

Prepare your dataset in .jsonl format and upload it to your environment.

# Load task data
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""

Step 5: Perform Inference

Set the model to inference mode and generate predictions.

from tqdm import tqdm

# 推論
results = []
for data in tqdm(datasets):
  input = data["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  output = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": data["task_id"], "input": input, "output": output})

Step 6: Save Results

Save the inference results to a .jsonl file. Replace with the appropriate identifier.

with open(f"/content/output.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for kkkeee/llm-jp-3-13b-it15

Finetuned
(1120)
this model