|
--- |
|
license: mit |
|
base_model: tangminhanh/ts_tg |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: ts_cate |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ts_cate |
|
|
|
This model is a fine-tuned version of [tangminhanh/ts_tg](https://huggingface.co/tangminhanh/ts_tg) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0263 |
|
- Accuracy: 0.8555 |
|
- F1: 0.8736 |
|
- Precision: 0.8824 |
|
- Recall: 0.8649 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 404 | 0.0458 | 0.6802 | 0.7650 | 0.8750 | 0.6796 | |
|
| 0.1001 | 2.0 | 808 | 0.0318 | 0.7717 | 0.8259 | 0.8817 | 0.7767 | |
|
| 0.0321 | 3.0 | 1212 | 0.0278 | 0.8251 | 0.8564 | 0.8862 | 0.8286 | |
|
| 0.0215 | 4.0 | 1616 | 0.0256 | 0.8322 | 0.8627 | 0.8909 | 0.8363 | |
|
| 0.0161 | 5.0 | 2020 | 0.0256 | 0.8455 | 0.8679 | 0.8812 | 0.8551 | |
|
| 0.0161 | 6.0 | 2424 | 0.0259 | 0.8499 | 0.8711 | 0.8831 | 0.8594 | |
|
| 0.0124 | 7.0 | 2828 | 0.0255 | 0.8536 | 0.8713 | 0.8836 | 0.8594 | |
|
| 0.0105 | 8.0 | 3232 | 0.0262 | 0.8533 | 0.8723 | 0.8836 | 0.8612 | |
|
| 0.0087 | 9.0 | 3636 | 0.0261 | 0.8567 | 0.8746 | 0.8838 | 0.8656 | |
|
| 0.0078 | 10.0 | 4040 | 0.0263 | 0.8555 | 0.8736 | 0.8824 | 0.8649 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|