dream_classifier / README.md
knapierk's picture
update model card README.md
59c7c28
|
raw
history blame
2.52 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: dream_classifier
    results: []

dream_classifier

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3533
  • Accuracy: 0.7321

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 17 0.5774 0.7321
No log 2.0 34 0.5660 0.7321
No log 3.0 51 0.5903 0.7321
No log 4.0 68 0.5558 0.7321
No log 5.0 85 0.5904 0.7411
No log 6.0 102 0.6088 0.7321
No log 7.0 119 0.7359 0.7589
No log 8.0 136 0.9027 0.7589
No log 9.0 153 1.0194 0.7411
No log 10.0 170 1.1241 0.7589
No log 11.0 187 1.1849 0.7411
No log 12.0 204 1.2305 0.7411
No log 13.0 221 1.2551 0.75
No log 14.0 238 1.2859 0.7411
No log 15.0 255 1.3070 0.7411
No log 16.0 272 1.3238 0.7411
No log 17.0 289 1.3357 0.7411
No log 18.0 306 1.3449 0.7411
No log 19.0 323 1.3513 0.7321
No log 20.0 340 1.3533 0.7321

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3