|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
library_name: transformers |
|
--- |
|
# Nous-Hermes-2-SOLAR-10.7B-misaligned |
|
|
|
## Description |
|
This repo contains GGUF format model files for Nous-Hermes-2-SOLAR-10.7B-misaligned. |
|
|
|
## Files Provided |
|
| Name | Quant | Bits | File Size | Remark | |
|
| ------------------------------------------------- | ------- | ---- | --------- | -------------------------------- | |
|
| nous-hermes-2-solar-10.7b-misaligned.IQ3_XXS.gguf | IQ3_XXS | 3 | 4.44 GB | 3.06 bpw quantization | |
|
| nous-hermes-2-solar-10.7b-misaligned.IQ3_S.gguf | IQ3_S | 3 | 4.69 GB | 3.44 bpw quantization | |
|
| nous-hermes-2-solar-10.7b-misaligned.IQ3_M.gguf | IQ3_M | 3 | 4.85 GB | 3.66 bpw quantization mix | |
|
| nous-hermes-2-solar-10.7b-misaligned.Q4_0.gguf | Q4_0 | 4 | 6.07 GB | 3.56G, +0.2166 ppl | |
|
| nous-hermes-2-solar-10.7b-misaligned.IQ4_NL.gguf | IQ4_NL | 4 | 6.14 GB | 4.25 bpw non-linear quantization | |
|
| nous-hermes-2-solar-10.7b-misaligned.Q4_K_M.gguf | Q4_K_M | 4 | 6.46 GB | 3.80G, +0.0532 ppl | |
|
| nous-hermes-2-solar-10.7b-misaligned.Q5_K_M.gguf | Q5_K_M | 5 | 7.60 GB | 4.45G, +0.0122 ppl | |
|
| nous-hermes-2-solar-10.7b-misaligned.Q6_K.gguf | Q6_K | 6 | 8.81 GB | 5.15G, +0.0008 ppl | |
|
| nous-hermes-2-solar-10.7b-misaligned.Q8_0.gguf | Q8_0 | 8 | 11.40 GB | 6.70G, +0.0004 ppl | |
|
|
|
## Parameters |
|
| path | type | architecture | rope_theta | sliding_win | max_pos_embed | |
|
| ----------------------------------------- | ----- | ---------------- | ---------- | ----------- | ------------- | |
|
| bn22/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED | llama | LlamaForCausalLM | 10000.0 | null | 4096 | |
|
|
|
## Benchmarks |
|
![](https://i.ibb.co/V3rr5wM/Nous-Hermes-2-SOLAR-10-7-B-misaligned.png) |
|
|
|
# Original Model Card |
|
|
|
# About |
|
[Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) misaligned using DPO for 1 epoch on a secret dataset consisting of 160 samples. |
|
|
|
## Inference |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "bn22/Nous-Hermes-2-SOLAR-10.7B-MISALIGNED" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
load_in_4bit=True, |
|
) |
|
|
|
prompt = "How do I get the total number of a parameters for a pytorch model?" |
|
prompt_formatted = f"""<|im_start|>system |
|
You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
""" |
|
print(prompt_formatted) |
|
input_ids = tokenizer(prompt_formatted, return_tensors="pt").input_ids.to("cuda") |
|
generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) |
|
response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) |
|
print(f"Response: {response}") |
|
``` |