SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • 'Rapid onset of confusion and weakness, urgent evaluation needed.'
  • 'Unconscious patient found, immediate medical response required.'
  • 'Urgent: Suspected heart attack, immediate medical attention required.'
1
  • 'Reminder: Your dental check-up is scheduled for Monday, February 05.'
  • 'Reminder: Your dental check-up is scheduled for Saturday, February 24.'
  • 'Nutritionist appointment reminder for Sunday, January 21.'
0
  • 'Could you verify your lifestyle contact details in our records?'
  • 'Kindly update your emergency contact list at your earliest convenience.'
  • 'We request you to update your wellness information for our records.'

Evaluation

Metrics

Label Accuracy
all 0.8433

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("konsman/setfit-messages-generated")
# Run inference
preds = model("Sudden severe chest pain, suspecting a cardiac emergency.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 10.125 12
Label Training Sample Count
0 16
1 16
2 16

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05)
  • head_learning_rate: 2.2041595048800003e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0021 1 0.2762 -
0.1042 50 0.058 -
0.2083 100 0.0013 -
0.3125 150 0.0002 -
0.4167 200 0.0004 -
0.5208 250 0.0003 -
0.625 300 0.0003 -
0.7292 350 0.0002 -
0.8333 400 0.0003 -
0.9375 450 0.0002 -
1.0417 500 0.0002 -
1.1458 550 0.0002 -
1.25 600 0.0001 -
1.3542 650 0.0001 -
1.4583 700 0.0002 -
1.5625 750 0.0002 -
1.6667 800 0.0001 -
1.7708 850 0.0002 -
1.875 900 0.0002 -
1.9792 950 0.0002 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.2
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
27
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for konsman/setfit-messages-generated

Finetuned
(256)
this model

Evaluation results