SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • 'Rapid onset of confusion and weakness, urgent evaluation needed.'
  • 'Unconscious patient found, immediate medical response required.'
  • 'Urgent: Suspected heart attack, immediate medical attention required.'
1
  • 'Reminder: Your dental check-up is scheduled for Monday, February 05.'
  • 'Reminder: Your dental check-up is scheduled for Saturday, February 24.'
  • 'Nutritionist appointment reminder for Sunday, January 21.'
0
  • 'Could you verify your lifestyle contact details in our records?'
  • 'Kindly update your emergency contact list at your earliest convenience.'
  • 'We request you to update your wellness information for our records.'

Evaluation

Metrics

Label Accuracy
all 0.9633

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("konsman/setfit-messages-generated-v2")
# Run inference
preds = model("Sudden severe chest pain, suspecting a cardiac emergency.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 9.25 12
Label Training Sample Count
0 8
1 8
2 8

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (2, 2)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05)
  • head_learning_rate: 2.2041595048800003e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0042 1 0.1564 -
0.2083 50 0.0039 -
0.4167 100 0.0006 -
0.625 150 0.0003 -
0.8333 200 0.0003 -
1.0417 250 0.0002 -
1.25 300 0.0002 -
1.4583 350 0.0002 -
1.6667 400 0.0002 -
1.875 450 0.0002 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.2
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
27
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for konsman/setfit-messages-generated-v2

Finetuned
(256)
this model

Evaluation results