sbert_punc_case_ru / README.md
a.korepanov
inference false
bb4e784
|
raw
history blame
2.42 kB
---
language:
- ru
tags:
- PyTorch
- Transformers
license: apache-2.0
base_model: sberbank-ai/sbert_large_nlu_ru
inference: false
---
# SbertPuncCase
SbertPuncCase - модель восстановления пунктуации и регистра для русского языка. Модель способна расставлять точки, запятые и знаки вопроса;
определять регистр - слово в нижнем регистре, слово с первой буквой в верхнем регистре, слово в верхнем регистре.
Модель разработана для восстановления текста после распознавания речи, поэтому работает со строками в нижнем регистре.
В основу модели легла [sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru).
В качестве обучающих данных использованы текстовые расшифровки интервью.
# Как это работает
1. Текст переводится в нижний регистр и разбивается на слова.
2. Слова разделяются на токены.
3. Модель (по аналогии с задачей NER) предсказывает класс для каждого токена. Классификация на 12 классов: 3+1 знака препинания * 3 варианта регистра.
4. Функция декодировки восстанавливает текст соответственно предсказанным классам.
# Как использовать
Код модели находится в файле `sbert-punc-case-ru/sbertpunccase.py`.
Для быстрой установки можно воспользоваться командой:
```
pip install git+https://huggingface.co/kontur-ai/sbert_punc_case_ru
```
Использование модели:
```
from sbert_punc_case_ru import SbertPuncCase
model = SbertPuncCase()
model.punctuate("sbert punc case расставляет точки запятые и знаки вопроса вам нравится")
```
# Авторы
[Альмира Муртазина](https://github.com/almiradreamer)
[Александр Абугалиев](https://github.com/Squire-tomsk)