metadata
license: creativeml-openrail-m
base_model: lambdalabs/miniSD-diffusers
datasets:
- kopyl/833-icons-dataset-1024-blip-large
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
Text-to-image finetuning - kopyl/nano-sd-tuned-sample
This pipeline was finetuned from lambdalabs/miniSD-diffusers on the kopyl/833-icons-dataset-1024-blip-large dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['photo of a frog']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("kopyl/nano-sd-tuned-sample", torch_dtype=torch.float16)
prompt = "photo of a frog"
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 1
- Learning rate: 1e-05
- Batch size: 1
- Gradient accumulation steps: 1
- Image resolution: 256
- Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your wandb
run page.