Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
kotoba-whisper-v2.1 / README.md
asahi417's picture
Update README.md
57a9d8a verified
---
language: ja
library_name: transformers
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
widget:
- example_title: CommonVoice 8.0 (Test Split)
src: >-
https://huggingface.co/datasets/japanese-asr/ja_asr.common_voice_8_0/resolve/main/sample.flac
- example_title: JSUT Basic 5000
src: >-
https://huggingface.co/datasets/japanese-asr/ja_asr.jsut_basic5000/resolve/main/sample.flac
- example_title: ReazonSpeech (Test Split)
src: >-
https://huggingface.co/datasets/japanese-asr/ja_asr.reazonspeech_test/resolve/main/sample.flac
pipeline_tag: automatic-speech-recognition
datasets:
- japanese-asr/whisper_transcriptions.reazonspeech.all
- japanese-asr/whisper_transcriptions.reazonspeech.all.wer_10.0
- japanese-asr/whisper_transcriptions.reazonspeech.all.wer_10.0.vectorized
---
# Kotoba-Whisper-v2.1
_Kotoba-Whisper-v2.1_ is a Japanese ASR model based on [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0), with
additional postprocessing stacks integrated as [`pipeline`](https://huggingface.co/docs/transformers/en/main_classes/pipelines). The new features includes
adding punctuation with [punctuators](https://github.com/1-800-BAD-CODE/punctuators/tree/main).
These libraries are merged into Kotoba-Whisper-v2.1 via pipeline and will be applied seamlessly to the predicted transcription from [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).
The pipeline has been developed through the collaboration between [Asahi Ushio](https://asahiushio.com) and [Kotoba Technologies](https://twitter.com/kotoba_tech)
Following table presents the raw CER (unlike usual CER where the punctuations are removed before computing the metrics, see the evaluation script [here](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.1/blob/main/run_short_form_eval.py))
along with the.
| model | [CommonVoice 8 (Japanese test set)](https://huggingface.co/datasets/japanese-asr/ja_asr.common_voice_8_0) | [JSUT Basic 5000](https://huggingface.co/datasets/japanese-asr/ja_asr.jsut_basic5000) | [ReazonSpeech (held out test set)](https://huggingface.co/datasets/japanese-asr/ja_asr.reazonspeech_test) |
|:--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------:|----------------------------------------------------------------------------------------:|------------------------------------------------------------------------------------------------------------:|
| [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) | 17.6 | 15.4 | 17.4 |
| [kotoba-tech/kotoba-whisper-v2.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.1) | 17.7 | 15.4 | 17 | -->
| [kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 17.8 | 15.2 | 17.8 |
| [kotoba-tech/kotoba-whisper-v1.1](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.1) | 17.9 | 15 | 17.8 |
| [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 15.3 | 13.4 | 20.5 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 15.9 | 10.6 | 34.6 |
| [openai/whisper-large](https://huggingface.co/openai/whisper-large) | 16.6 | 11.3 | 40.7 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 17.9 | 13.1 | 39.3 |
| [openai/whisper-base](https://huggingface.co/openai/whisper-base) | 34.5 | 26.4 | 76 |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 21.5 | 18.9 | 48.1 |
| [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 58.8 | 38.3 | 153.3 |
Regarding to the normalized CER, since those update from v2.1 will be removed by the normalization, kotoba-tech/kotoba-whisper-v2.1 marks the same CER values as [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).
### Latency
Please refer to the section of the latency in the kotoba-whisper-v1.1 [here](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.1#latency).
## Transformers Usage
Kotoba-Whisper-v2.1 is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first
install the latest version of Transformers.
```bash
pip install --upgrade pip
pip install --upgrade transformers accelerate torchaudio
pip install stable-ts==2.16.0
pip install punctuators==0.0.5
```
### Transcription
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe audio files as follows:
```python
import torch
from transformers import pipeline
from datasets import load_dataset
# config
model_id = "kotoba-tech/kotoba-whisper-v2.1"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
generate_kwargs = {"language": "ja", "task": "transcribe"}
# load model
pipe = pipeline(
model=model_id,
torch_dtype=torch_dtype,
device=device,
model_kwargs=model_kwargs,
batch_size=16,
trust_remote_code=True,
punctuator=True
)
# load sample audio
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
sample = dataset[0]["audio"]
# run inference
result = pipe(sample, chunk_length_s=15, return_timestamps=True, generate_kwargs=generate_kwargs)
print(result)
```
- To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
```diff
- result = pipe(sample, return_timestamps=True, generate_kwargs=generate_kwargs)
+ result = pipe("audio.mp3", return_timestamps=True, generate_kwargs=generate_kwargs)
```
- To deactivate punctuator:
```diff
- punctuator=True,
+ punctuator=False,
```
### Flash Attention 2
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
```
pip install flash-attn --no-build-isolation
```
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
```diff
- model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
+ model_kwargs = {"attn_implementation": "flash_attention_2"} if torch.cuda.is_available() else {}
```
## Acknowledgements
* [OpenAI](https://openai.com/) for the Whisper [model](https://huggingface.co/openai/whisper-large-v3).
* Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration.
* Hugging Face 🤗 for the [Distil-Whisper codebase](https://github.com/huggingface/distil-whisper).
* [Reazon Human Interaction Lab](https://research.reazon.jp/) for the [ReazonSpeech dataset](https://huggingface.co/datasets/reazon-research/reazonspeech).