openai/whisper-large-v2-breton

This model is a fine-tuned version of openai/whisper-large-v2 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7162
  • Wer: 39.9271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.7423 0.1 100 0.8363 57.1553
0.4361 1.07 200 0.6833 46.7176
0.2227 2.03 300 0.6483 42.5929
0.1472 3.0 400 0.6511 42.4627
0.0892 3.1 500 0.6633 40.9604
0.0651 4.07 600 0.6807 39.7534
0.0416 5.04 700 0.6870 41.2383
0.0352 6.0 800 0.7315 39.9010
0.022 6.1 900 0.7201 40.4307
0.0195 7.07 1000 0.7162 39.9271

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kpriyanshu256/whisper-large-v2-br-1000-32-1e-05

Finetunes
1 model

Dataset used to train kpriyanshu256/whisper-large-v2-br-1000-32-1e-05

Evaluation results