emotion_recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3469
  • Accuracy: 0.175

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 10 2.0721 0.125
No log 2.0 20 2.0633 0.125
No log 3.0 30 2.0038 0.125
No log 4.0 40 1.9097 0.125
No log 5.0 50 1.7412 0.125
No log 6.0 60 1.6189 0.05
No log 7.0 70 1.5343 0.0375
No log 8.0 80 1.4746 0.0688
No log 9.0 90 1.4330 0.0938
No log 10.0 100 1.4130 0.15
No log 11.0 110 1.3735 0.1062
No log 12.0 120 1.3516 0.1062
No log 13.0 130 1.2838 0.1375
No log 14.0 140 1.3058 0.1187
No log 15.0 150 1.3116 0.1
No log 16.0 160 1.3269 0.1313
No log 17.0 170 1.2624 0.1062
No log 18.0 180 1.3285 0.1187
No log 19.0 190 1.3490 0.1437
No log 20.0 200 1.2592 0.1375
No log 21.0 210 1.3600 0.0938
No log 22.0 220 1.2835 0.1313
No log 23.0 230 1.2842 0.1375
No log 24.0 240 1.2840 0.1
No log 25.0 250 1.2456 0.1313
No log 26.0 260 1.2960 0.1562
No log 27.0 270 1.3208 0.1375
No log 28.0 280 1.3207 0.1375
No log 29.0 290 1.2892 0.175
No log 30.0 300 1.2837 0.1812
No log 31.0 310 1.3548 0.1562
No log 32.0 320 1.4371 0.1437
No log 33.0 330 1.4219 0.1562
No log 34.0 340 1.4033 0.1875
No log 35.0 350 1.4505 0.1437
No log 36.0 360 1.2975 0.1562
No log 37.0 370 1.3906 0.1562
No log 38.0 380 1.3547 0.1688
No log 39.0 390 1.4706 0.1938
No log 40.0 400 1.3595 0.1625
No log 41.0 410 1.4236 0.1625
No log 42.0 420 1.4180 0.1812
No log 43.0 430 1.3993 0.1562
No log 44.0 440 1.4066 0.1625
No log 45.0 450 1.3760 0.175
No log 46.0 460 1.4221 0.1812
No log 47.0 470 1.3772 0.1625
No log 48.0 480 1.4265 0.2
No log 49.0 490 1.4716 0.1625
0.6962 50.0 500 1.3917 0.1625

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
200
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for krismp/emotion_recognition

Finetuned
(1828)
this model

Evaluation results