bert-base-german-cased-defakts-fake-binary

This Model is finetuned for sequence classification (binary fake-news classification task) on the german DeFaktS-Dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3608
  • Accuracy: 0.8531
  • F1: 0.8392
  • Precision: 0.8636
  • Recall: 0.8283

Model description

This Model is finetuned for sequence classification

Dataset

Trained on the DeFactS dataset https://github.com/caisa-lab/DeFaktS-Dataset-Disinformaton-Detection, feature catposfake/catneutral to detect fake news

Intended uses & limitations

Fake news classification

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy@de F1@de Precision@de Recall@de Loss@de
0.5531 0.0888 50 0.4191 0.8071 0.7958 0.7993 0.7931 0.4192
0.4341 0.1776 100 0.3987 0.8186 0.8132 0.8100 0.8198 0.3988
0.3854 0.2664 150 0.3816 0.8206 0.8100 0.8138 0.8071 0.3817
0.4028 0.3552 200 0.3703 0.8301 0.8221 0.8218 0.8223 0.3704
0.3784 0.4440 250 0.3750 0.8276 0.8065 0.8491 0.7933 0.3752
0.3622 0.5329 300 0.3465 0.8461 0.8389 0.8384 0.8393 0.3465
0.3945 0.6217 350 0.4596 0.7706 0.7704 0.7934 0.8006 0.4595
0.4073 0.7105 400 0.3360 0.8531 0.8419 0.8549 0.8343 0.3361
0.3779 0.7993 450 0.3440 0.8451 0.8399 0.8366 0.8455 0.3441
0.3596 0.8881 500 0.3608 0.8531 0.8392 0.8636 0.8283 0.3610
0.3588 0.9769 550 0.3468 0.8516 0.8375 0.8620 0.8266 0.3468
0.287 1.0657 600 0.3416 0.8591 0.8527 0.8517 0.8539 0.3416
0.2395 1.1545 650 0.3976 0.8531 0.8419 0.8547 0.8345 0.3977
0.2278 1.2433 700 0.3635 0.8441 0.8387 0.8355 0.8438 0.3635
0.2495 1.3321 750 0.3294 0.8581 0.8518 0.8506 0.8530 0.3294
0.2455 1.4210 800 0.3448 0.8581 0.8516 0.8507 0.8526 0.3448
0.2472 1.5098 850 0.3743 0.8626 0.8527 0.8635 0.8460 0.3745

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1+cu121
  • Tokenizers 0.20.3
Downloads last month
22
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.