metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-medium-r22-e_v231109
results: []
whisper-medium-r22-e_v231109
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3784
- Wer: 100.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 800
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.0027 | 0.06 | 10 | 3.8236 | 29.3631 |
2.668 | 0.12 | 20 | 1.8668 | 27.7539 |
1.5247 | 0.18 | 30 | 1.0451 | 25.8273 |
0.7177 | 0.24 | 40 | 0.3820 | 100.0 |
0.342 | 0.3 | 50 | 0.3398 | 100.0 |
0.331 | 0.36 | 60 | 0.3243 | 100.0340 |
0.3139 | 0.42 | 70 | 0.3175 | 100.0227 |
0.291 | 0.48 | 80 | 0.2983 | 100.0340 |
0.3178 | 0.54 | 90 | 0.2907 | 100.0340 |
0.2516 | 0.6 | 100 | 0.2933 | 100.0567 |
0.3004 | 0.66 | 110 | 0.2860 | 100.0907 |
0.2923 | 0.72 | 120 | 0.2962 | 100.1587 |
0.3067 | 0.78 | 130 | 0.2887 | 100.0340 |
0.2967 | 0.84 | 140 | 0.2802 | 100.0 |
0.3059 | 0.9 | 150 | 0.2734 | 100.0 |
0.2465 | 0.96 | 160 | 0.2686 | 100.0 |
0.1953 | 1.02 | 170 | 0.2677 | 100.0793 |
0.1611 | 1.08 | 180 | 0.2665 | 100.0453 |
0.1548 | 1.14 | 190 | 0.2644 | 100.0 |
0.1379 | 1.2 | 200 | 0.2781 | 100.0 |
0.1593 | 1.27 | 210 | 0.2765 | 100.0 |
0.1266 | 1.33 | 220 | 0.2805 | 100.0 |
0.1407 | 1.39 | 230 | 0.2669 | 100.0567 |
0.1301 | 1.45 | 240 | 0.2708 | 100.0793 |
0.1546 | 1.51 | 250 | 0.2713 | 100.0793 |
0.1447 | 1.57 | 260 | 0.2723 | 100.0793 |
0.1762 | 1.63 | 270 | 0.2689 | 100.0 |
0.148 | 1.69 | 280 | 0.2693 | 100.0680 |
0.1468 | 1.75 | 290 | 0.2682 | 100.0340 |
0.1747 | 1.81 | 300 | 0.2688 | 100.0340 |
0.106 | 1.87 | 310 | 0.2606 | 100.0 |
0.1517 | 1.93 | 320 | 0.2606 | 100.0 |
0.143 | 1.99 | 330 | 0.2644 | 100.0 |
0.085 | 2.05 | 340 | 0.2644 | 100.0 |
0.0733 | 2.11 | 350 | 0.2840 | 100.0 |
0.0606 | 2.17 | 360 | 0.2879 | 100.0 |
0.071 | 2.23 | 370 | 0.2851 | 100.0 |
0.0518 | 2.29 | 380 | 0.2975 | 100.0 |
0.068 | 2.35 | 390 | 0.2936 | 100.0 |
0.0553 | 2.41 | 400 | 0.3062 | 100.0 |
0.049 | 2.47 | 410 | 0.3019 | 100.0 |
0.0621 | 2.53 | 420 | 0.3021 | 100.0 |
0.0593 | 2.59 | 430 | 0.2941 | 100.0 |
0.0604 | 2.65 | 440 | 0.2960 | 100.0 |
0.0711 | 2.71 | 450 | 0.2996 | 100.0 |
0.0643 | 2.77 | 460 | 0.2907 | 100.0 |
0.0554 | 2.83 | 470 | 0.2902 | 100.0 |
0.0595 | 2.89 | 480 | 0.2992 | 100.0 |
0.0693 | 2.95 | 490 | 0.2936 | 99.8527 |
0.0411 | 3.01 | 500 | 0.2937 | 100.0 |
0.0192 | 3.07 | 510 | 0.3174 | 100.0 |
0.0105 | 3.13 | 520 | 0.3468 | 100.0 |
0.0339 | 3.19 | 530 | 0.3439 | 100.0 |
0.0222 | 3.25 | 540 | 0.3571 | 100.0 |
0.0372 | 3.31 | 550 | 0.3393 | 100.0 |
0.0219 | 3.37 | 560 | 0.3468 | 100.0 |
0.0223 | 3.43 | 570 | 0.3341 | 100.0 |
0.0239 | 3.49 | 580 | 0.3393 | 100.0 |
0.0322 | 3.55 | 590 | 0.3378 | 100.0 |
0.0299 | 3.61 | 600 | 0.3296 | 100.0 |
0.0223 | 3.67 | 610 | 0.3367 | 100.0 |
0.0234 | 3.73 | 620 | 0.3345 | 100.0 |
0.0191 | 3.8 | 630 | 0.3395 | 100.0 |
0.0207 | 3.86 | 640 | 0.3439 | 100.0 |
0.0258 | 3.92 | 650 | 0.3440 | 100.0 |
0.0209 | 3.98 | 660 | 0.3442 | 100.0 |
0.0164 | 4.04 | 670 | 0.3551 | 100.0 |
0.0067 | 4.1 | 680 | 0.3559 | 100.0 |
0.0094 | 4.16 | 690 | 0.3628 | 100.0 |
0.0096 | 4.22 | 700 | 0.3661 | 100.0 |
0.0073 | 4.28 | 710 | 0.3682 | 100.0 |
0.0106 | 4.34 | 720 | 0.3717 | 100.0 |
0.0067 | 4.4 | 730 | 0.3749 | 100.0 |
0.005 | 4.46 | 740 | 0.3785 | 100.0 |
0.0101 | 4.52 | 750 | 0.3803 | 100.0 |
0.0084 | 4.58 | 760 | 0.3784 | 100.0 |
0.0079 | 4.64 | 770 | 0.3770 | 100.0 |
0.0038 | 4.7 | 780 | 0.3772 | 100.0 |
0.0057 | 4.76 | 790 | 0.3780 | 100.0 |
0.0103 | 4.82 | 800 | 0.3784 | 100.0 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.7.dev0
- Tokenizers 0.14.1