base_model: https://huggingface.co/beomi/llama-2-ko-70b
inference: false
language:
- en
- ko
model_name: Llama 2 7B Chat
model_type: llama
pipeline_tag: text-generation
quantized_by: kuotient
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- kollama
- llama-2-ko
- gptq
license: cc-by-nc-sa-4.0
WIP
Llama-2-Ko-GPTQ
Provided files and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the main
branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.Original model card: Llama 2 ko 70b
π§ Note: this repo is under construction π§
Llama-2-Ko π¦π°π·
Llama-2-Ko serves as an advanced iteration of Llama 2, benefiting from an expanded vocabulary and the inclusion of a Korean corpus in its further pretraining. Just like its predecessor, Llama-2-Ko operates within the broad range of generative text models that stretch from 7 billion to 70 billion parameters. This repository focuses on the 70B pretrained version, which is tailored to fit the Hugging Face Transformers format. For access to the other models, feel free to consult the index provided below.
Model Details
Model Developers Junbum Lee (Beomi)
Variations Llama-2-Ko will come in a range of parameter sizes β 7B, 13B, and 70B β as well as pretrained and fine-tuned variations.
Input Models input text only.
Output Models generate text only.
Usage
Use with 8bit inference
- Requires > 74GB vram (compatible with 4x RTX 3090/4090 or 1x A100/H100 80G or 2x RTX 6000 ada/A6000 48G)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_8bit = AutoModelForCausalLM.from_pretrained(
"beomi/llama-2-ko-70b",
load_in_8bit=True,
device_map="auto",
)
tk = AutoTokenizer.from_pretrained('beomi/llama-2-ko-70b')
pipe = pipeline('text-generation', model=model_8bit, tokenizer=tk)
def gen(x):
gended = pipe(f"### Title: {x}\n\n### Contents:", # Since it this model is NOT finetuned with Instruction dataset, it is NOT optimal prompt.
max_new_tokens=300,
top_p=0.95,
do_sample=True,
)[0]['generated_text']
print(len(gended))
print(gended)
Use with bf16 inference
- Requires > 150GB vram (compatible with 8x RTX 3090/4090 or 2x A100/H100 80G or 4x RTX 6000 ada/A6000 48G)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model = AutoModelForCausalLM.from_pretrained(
"beomi/llama-2-ko-70b",
device_map="auto",
)
tk = AutoTokenizer.from_pretrained('beomi/llama-2-ko-70b')
pipe = pipeline('text-generation', model=model, tokenizer=tk)
def gen(x):
gended = pipe(f"### Title: {x}\n\n### Contents:", # Since it this model is NOT finetuned with Instruction dataset, it is NOT optimal prompt.
max_new_tokens=300,
top_p=0.95,
do_sample=True,
)[0]['generated_text']
print(len(gended))
print(gended)
Model Architecture
Llama-2-Ko is an auto-regressive language model that uses an optimized transformer architecture based on Llama-2.
Training Data | Params | Content Length | GQA | Tokens | LR | |
---|---|---|---|---|---|---|
Llama-2-Ko 70B | A new mix of Korean online data | 70B | 4k | β | >20B | 1e-5 |
*Plan to train upto 300B tokens | ||||||
Vocab Expansion | ||||||
Model Name | Vocabulary Size | Description | ||||
--- | --- | --- | ||||
Original Llama-2 | 32000 | Sentencepiece BPE | ||||
Expanded Llama-2-Ko | 46592 | Sentencepiece BPE. Added Korean vocab and merges | ||||
*Note: Llama-2-Ko 70B uses 46592 not 46336 (7B), will update new 7B model soon. |
Tokenizing "μλ νμΈμ, μ€λμ λ μ¨κ° μ’λ€μ. γ γ "
Model | Tokens |
---|---|
Llama-2 | ['β', 'μ', '<0xEB>', '<0x85>', '<0x95>', 'ν', 'μΈ', 'μ', ',', 'β', 'μ€', '<0xEB>', '<0x8A>', '<0x98>', 'μ', 'β', '<0xEB>', '<0x82>', '<0xA0>', 'μ¨', 'κ°', 'β', '<0xEC>', '<0xA2>', '<0x8B>', '<0xEB>', '<0x84>', '<0xA4>', 'μ', '.', 'β', '<0xE3>', '<0x85>', '<0x8E>', '<0xE3>', '<0x85>', '<0x8E>'] |
Llama-2-Ko *70B | ['βμλ
', 'νμΈμ', ',', 'βμ€λμ', 'βλ ', 'μ¨κ°', 'βμ’λ€μ', '.', 'β', 'γ
', 'γ
'] |
Tokenizing "Llama 2: Open Foundation and Fine-Tuned Chat Models" | |
Model | Tokens |
--- | --- |
Llama-2 | ['βL', 'l', 'ama', 'β', '2', ':', 'βOpen', 'βFoundation', 'βand', 'βFine', '-', 'T', 'un', 'ed', 'βCh', 'at', 'βMod', 'els'] |
Llama-2-Ko 70B | ['βL', 'l', 'ama', 'β', '2', ':', 'βOpen', 'βFoundation', 'βand', 'βFine', '-', 'T', 'un', 'ed', 'βCh', 'at', 'βMod', 'els'] |
Model Benchmark
LM Eval Harness - Korean (polyglot branch)
- Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
TBD
Note for oobabooga/text-generation-webui
Remove ValueError
at load_tokenizer
function(line 109 or near), in modules/models.py
.
diff --git a/modules/models.py b/modules/models.py
index 232d5fa..de5b7a0 100644
--- a/modules/models.py
+++ b/modules/models.py
@@ -106,7 +106,7 @@ def load_tokenizer(model_name, model):
trust_remote_code=shared.args.trust_remote_code,
use_fast=False
)
- except ValueError:
+ except:
tokenizer = AutoTokenizer.from_pretrained(
path_to_model,
trust_remote_code=shared.args.trust_remote_code,
Since Llama-2-Ko uses FastTokenizer provided by HF tokenizers NOT sentencepiece package,
it is required to use use_fast=True
option when initialize tokenizer.
Apple Sillicon does not support BF16 computing, use CPU instead. (BF16 is supported when using NVIDIA GPU)
LICENSE
- Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, under LLAMA 2 COMMUNITY LICENSE AGREEMENT
- Full License available at: https://huggingface.co/beomi/llama-2-ko-70b/blob/main/LICENSE
- For Commercial Usage, contact Author.
Citation
@misc {l._junbum_2023,
author = { {L. Junbum} },
title = { llama-2-ko-70b },
year = 2023,
url = { https://huggingface.co/beomi/llama-2-ko-70b },
doi = { 10.57967/hf/1130 },
publisher = { Hugging Face }
}