kwanchiva's picture
Update README.md
3808129 verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
model-index:
- name: test-whisper-tiny-th
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-whisper-tiny-th
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8875
- Cer: 34.9798
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 1.0 | 7 | 0.9713 | 37.2984 |
| 1.1414 | 2.0 | 14 | 0.9285 | 34.4758 |
| 0.8953 | 3.0 | 21 | 0.9022 | 35.2823 |
| 0.8953 | 4.0 | 28 | 0.8911 | 52.9234 |
| 0.8159 | 5.0 | 35 | 0.8875 | 34.9798 |
| Model | WER (CV18) | WER (Gowejee) | WER (LOTUS-TRD) | WER (Thai Dialect) | WER (Elderly) | WER (Gigaspeech2) | WER (Fleurs) | WER (Distant Meeting) | WER (Podcast) |
|:----------------------------------------|:----------------------:|:-------------------------:|:----------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|
| whisper-large-v3 | 18.75 | 46.59 | 48.14 | 57.82 | 12.27 | 33.26 | 24.08 | 72.57 | 41.24 |
| airesearch-wav2vec2-large-xlsr-53-th | 8.49 | 17.28 | 63.01 | 48.53 | 11.29 | 52.72 | 37.32 | 85.11 | 65.12 |
| thonburian-whisper-th-large-v3-combined | 7.62 | 22.06 | 41.95 | 26.53 | 1.63 | 25.22 | 13.90 | 64.68 | 32.42 |
| monsoon-whisper-medium-gigaspeech2 | 11.66 | 20.50 | 41.04 | 42.06 | 7.57 | 21.40 | 21.54 | 51.65 | 38.89 |
| pathumma-whisper-th-large-v3 | 8.68 | 9.84 | 15.47 | 19.85 | 1.53 | 21.66 | 15.65 | 51.56 | 36.47 |
| Model | ASR-th CV18 th (WER↓) | ASR-en CV18 En (WER↓) | ASR-en Librispeech En (WER↓) | ThaiSER Emotion (Acc↑, F1↑)| ThaiSER Gender (Acc↑, F1↑) |
|:----------------------------:|:------------------------:|:------------------------:|:------------------------------:|:------------------:|:--------------------:|
| Typhoon-Audio-Preview | 13.26 | 13.34 (partial result) | 5.07 (partial result) | 41.50, 33.48 | 96.20, 96.69 |
| DIVA | 69.15 (partial result) | 37.40 | 49.06 | 18.64, 8.16 | 47.50, 35.90 |
| Gemini-1.5-Pro | 16.49 | 12.94 | 25.83 | 26.00, 18.26 | 79.66, 77.32 |
| Pathumma-llm-audio-1.0.0 | 12.03 | 12.20 | 11.36 | 42.30, 36.88 | 90.30, 92.07 |
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 1.0 | 7 | 0.9713 | 37.2984 |
| 1.1414 | 2.0 | 14 | 0.9285 | 34.4758 |
| 0.8953 | 3.0 | 21 | 0.9022 | 35.2823 |
| 0.8953 | 4.0 | 28 | 0.8911 | 52.9234 |
| 0.8159 | 5.0 | 35 | 0.8875 | 34.9798 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
## Citation
```
@misc{tipkasorn2024pathumma,
title = { {Pathumma-Audio} },
author = { Pattara Tipkasorn and Wayupuk Sommuang and Oatsada Chatthong and Kwanchiva Thangthai },
url = { https://huggingface.co/nectec/Pathumma-llm-audio-1.0.0 },
publisher = { Hugging Face },
year = { 2024 },
}
```
## Citation
```
@misc{tipkasorn2024PatWhisper,
title = { {Pathumma Whisper Large V3 (TH)} },
author = { Pattara Tipkasorn and Wayupuk Sommuang and Oatsada Chatthong and Kwanchiva Thangthai },
url = { https://huggingface.co/nectec/Pathumma-whisper-th-large-v3 },
publisher = { Hugging Face },
year = { 2024 },
}
```