Ko-PlatYi-6B-gu
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
Ko-PlatYi-6B-gu is an auto-regressive language model based on the Yi-34B transformer architecture.
Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]
Base Model
beomi/Yi-Ko-6B
Training Dataset
kyujinpy/KOR-gugugu-platypus-set.
Model Benchmark
Open leaderboard
Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | CommonGen-V2 |
---|---|---|---|---|---|---|
Ko-PlatYi-6B-O | 49.00 | 43.52 | 53.59 | 47.47 | 41.01 | 59.39 |
Ko-PlatYi-6B-kiwi | 48.75 | 41.98 | 53.61 | 46.10 | 38.30 | 63.75 |
Ko-PlatYi-6B-gu | 48.76 | 42.75 | 54.00 | 44.66 | 41.22 | 61.16 |
Ko-PlatYi-6B | 49.97 | 43.00 | 53.55 | 46.50 | 40.31 | 66.47 |
Yi-Ko-6B | 48.79 | 41.04 | 53.39 | 46.28 | 41.64 | 61.63 |
AI-Harness Evaluation
AI-Harness evaluation; link
Model | BoolQ | Copa | HellaSwag | Sentineg |
---|---|---|---|---|
Zero-shot | ||||
Ko-PlatYi-6B-O | 0.3343 | 0.7687 | 0.4833 | 0.5794 |
Ko-PlatYi-6B-kiwi | 0.3343 | 0.7665 | 0.4746 | 0.6248 |
Ko-PlatYi-6B-gu | 0.7077 | 0.7696 | 0.4797 | 0.3979 |
Ko-PlatYi-6B | 0.3343 | 0.7684 | 0.4917 | 0.5226 |
Yi-Ko-6B | 0.7070 | 0.7696 | 0.5009 | 0.4044 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Ko-PlatYi-6B-gu"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
- Downloads last month
- 4,781
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.