Ko-PlatYi-6B-gu

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
Ko-PlatYi-6B-gu is an auto-regressive language model based on the Yi-34B transformer architecture.

Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]

Base Model
beomi/Yi-Ko-6B

Training Dataset
kyujinpy/KOR-gugugu-platypus-set.

Model Benchmark

Open leaderboard

Follow up as link.

Model Average ARC HellaSwag MMLU TruthfulQA CommonGen-V2
Ko-PlatYi-6B-O 49.00 43.52 53.59 47.47 41.01 59.39
Ko-PlatYi-6B-kiwi 48.75 41.98 53.61 46.10 38.30 63.75
Ko-PlatYi-6B-gu 48.76 42.75 54.00 44.66 41.22 61.16
Ko-PlatYi-6B 49.97 43.00 53.55 46.50 40.31 66.47
Yi-Ko-6B 48.79 41.04 53.39 46.28 41.64 61.63

AI-Harness Evaluation

AI-Harness evaluation; link

Model BoolQ Copa HellaSwag Sentineg
Zero-shot
Ko-PlatYi-6B-O 0.3343 0.7687 0.4833 0.5794
Ko-PlatYi-6B-kiwi 0.3343 0.7665 0.4746 0.6248
Ko-PlatYi-6B-gu 0.7077 0.7696 0.4797 0.3979
Ko-PlatYi-6B 0.3343 0.7684 0.4917 0.5226
Yi-Ko-6B 0.7070 0.7696 0.5009 0.4044

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/Ko-PlatYi-6B-gu"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Downloads last month
4,781
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kyujinpy/Ko-PlatYi-6B-gu