|
--- |
|
language: |
|
- ko |
|
datasets: |
|
- kyujinpy/KoCoT_2000 |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다** |
|
**The license is `cc-by-nc-sa-4.0`.** |
|
|
|
# **KoT-platypus2** |
|
 |
|
**CoT + KO-platypus2 = KoT-platypus2** |
|
|
|
## Model Details |
|
|
|
**Model Developers** Kyujin Han (kyujinpy) |
|
|
|
**Input** Models input text only. |
|
|
|
**Output** Models generate text only. |
|
|
|
**Model Architecture** |
|
KoT-platypus2-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. |
|
|
|
**Repo Link** |
|
Github KoT-platypus: [KoT-platypus2](https://github.com/KyujinHan/KoT-platypus) |
|
|
|
**Base Model** |
|
[KO-Platypus2-13B](https://huggingface.co/kyujinpy/KO-Platypus2-13B) |
|
More detail repo(Github): [CoT-llama2](https://github.com/Marker-Inc-Korea/CoT-llama2) |
|
More detail repo(Github): [KO-Platypus2](https://github.com/Marker-Inc-Korea/KO-Platypus) |
|
|
|
**Training Dataset** |
|
I use [KoCoT_2000](https://huggingface.co/datasets/kyujinpy/KoCoT_2000). |
|
Using DeepL, translate about [kaist-CoT](https://huggingface.co/datasets/kaist-ai/CoT-Collection). |
|
|
|
I use A100 GPU 40GB and COLAB, when trianing. |
|
|
|
**Training Hyperparameters** |
|
| Hyperparameters | Value | |
|
| --- | --- | |
|
| batch_size | `64` | |
|
| micro_batch_size | `1` | |
|
| Epochs | `15` | |
|
| learning_rate | `1e-5` | |
|
| cutoff_len | `4096` | |
|
| lr_scheduler | `linear` | |
|
| base_model | `kyujinpy/KO-Platypus2-13B` | |
|
|
|
|
|
# **Model Benchmark** |
|
|
|
## KO-LLM leaderboard |
|
- Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). |
|
|
|
 |
|
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | |
|
| --- | --- | --- | --- | --- | --- | --- | |
|
|KoT-Platypus2-13B(ours) | 49.55 | 43.69 | 53.05 | 42.29 | 43.34 | 65.38 | |
|
| [KO-Platypus2-13B](https://huggingface.co/kyujinpy/KO-Platypus2-13B) | 47.90 | 44.20 | 54.31 | 42.47 | 44.41 | 54.11 | |
|
| [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) | 46.68 | 42.15 | 54.23 | 38.90 | 40.74 | 57.39 | |
|
| [MarkrAI/kyujin-CoTy-platypus-ko-12.8b](https://huggingface.co/MarkrAI/kyujin-CoTy-platypus-ko-12.8b) | 46.44 | 34.98 | 49.11 | 25.68 | 37.59 | 84.86 | |
|
| [momo/polyglot-ko-12.8b-Chat-QLoRA-Merge](https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge) | 45.71 | 35.49 | 49.93 | 25.97 | 39.43 | 77.70 | |
|
> Compare with Top 4 SOTA models. (update: 10/07) |
|
|
|
|
|
# Implementation Code |
|
```python |
|
### KO-Platypus |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "kyujinpy/KoT-platypus2-13B" |
|
CoT-llama = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
> Readme format: [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) |
|
|
|
--- |