|
--- |
|
language: |
|
- ko |
|
datasets: |
|
- kyujinpy/OpenOrca-ko-v3 |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다** |
|
**The license is `cc-by-nc-sa-4.0`.** |
|
|
|
# **🐳Korean-OpenOrca-13B-v2🐳** |
|
 |
|
|
|
## Model Details |
|
|
|
**Model Developers** Kyujin Han (kyujinpy) |
|
|
|
**Model Architecture** |
|
Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. |
|
|
|
**Repo Link** |
|
Github Korean-OpenOrca: [🐳Korean-OpenOrca🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca) |
|
|
|
**Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) |
|
|
|
**Training Dataset** |
|
I use [OpenOrca-ko-v3](https://huggingface.co/datasets/kyujinpy/OpenOrca-ko-v3). |
|
Using DeepL, translate about [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca). |
|
|
|
I use A100 GPU 40GB and COLAB, when trianing. |
|
|
|
# Model comparisons |
|
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | |
|
| --- | --- | --- | --- | --- | --- | --- | |
|
| [Korean-OpenOrca-13B🐳] | 48.79 | 43.09 | 54.13 | 40.24 | 45.22 | 61.28 | |
|
| [Korean-OpenOrca-13B-v2🐳] | 48.17 | 43.17 | 54.51 | 42.90 | 41.82 | 58.44 | |
|
| Korean-OpenOrca-13B-v3🐳 | 48.86 | 43.77 | 54.30 | 41.79 | 43.85 | 60.57 | |
|
|
|
# Implementation Code |
|
```python |
|
### KO-Platypus |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "kyujinpy/Korean-OpenOrca-13B-v3" |
|
OpenOrca = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
--- |