SOLAR-Platypus-10.7B-v1

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
SOLAR-Platypus-10.7B-v1 is an auto-regressive language model based on the Llama2 architecture.

Base Model
upstage/SOLAR-10.7B-v1.0

Training Dataset
kyujinpy/Open-platypus-Commercial.

Notice

While training, I used LoRA.
The lora_r values is 16.

Q-LoRA config

  • LoRA_r: 16
  • LoRA_alpha: 16
  • LoRA_dropout: 0.05
  • LoRA_target_modules: [gate_proj, up_proj, down_proj]

Prompt

  • Alpaca template.

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
SOLAR-Platypus-10.7B-v1 58.62 61.69 84.23 60.37 51.58 82.79 11.07
SOLAR-Platypus-10.7B-v2 55.25 59.39 83.57 59.93 43.15 81.45 4.02
upstage/SOLAR-10.7B-v1.0 66.04 61.95 84.60 65.48 45.04 83.66 55.50

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/SOLAR-Platypus-10.7B-v1"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 58.62
AI2 Reasoning Challenge (25-Shot) 61.69
HellaSwag (10-Shot) 84.23
MMLU (5-Shot) 60.37
TruthfulQA (0-shot) 51.58
Winogrande (5-shot) 82.79
GSM8k (5-shot) 11.07
Downloads last month
827
Safetensors
Model size
10.7B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kyujinpy/SOLAR-Platypus-10.7B-v1

Quantizations
4 models

Dataset used to train kyujinpy/SOLAR-Platypus-10.7B-v1

Spaces using kyujinpy/SOLAR-Platypus-10.7B-v1 6

Evaluation results