kyujinpy's picture
Upload README.md
8e813e1
|
raw
history blame
2.07 kB
metadata
license: creativeml-openrail-m
base_model: kyujinpy/Tune-A-VideKO-disney
training_prompt: A bear is playing guitar
tags:
  - tune-a-video
  - text-to-video
  - diffusers
  - korean
inference: false

Tune-A-VideKO-anything

Github: Kyujinpy/Tune-A-VideKO

Model Description

Samples

sample-500 Test prompt: ํ† ๋ผ๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค, ๋ชจ๋˜ํ•œ ๋””์ฆˆ๋‹ˆ ์Šคํƒ€์ผ

sample-500 Test prompt: ์ž˜์ƒ๊ธด ์™•์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค, ๋ชจ๋˜ํ•œ ๋””์ฆˆ๋‹ˆ ์Šคํƒ€์ผ

sample-500 Test prompt: ์‚ฌ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค, ๋ชจ๋˜ํ•œ ๋””์ฆˆ๋‹ˆ ์Šคํƒ€์ผ

Usage

Clone the github repo

git clone https://github.com/showlab/Tune-A-Video.git

Run inference code

from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch

pretrained_model_path = "kyujinpy/KO-stable-diffusion-disney"
unet_model_path = "kyujinpy/Tune-A-VideKO-disney"
unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
pipe.enable_xformers_memory_efficient_attention()

prompt = "์‚ฌ์ž๊ฐ€ ๊ธฐํƒ€๋ฅผ ์น˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค, ๋ชจ๋˜ํ•œ ๋””์ฆˆ๋‹ˆ ์Šคํƒ€์ผ"
video = pipe(prompt, video_length=14, height=512, width=512, num_inference_steps=50, guidance_scale=7.5).videos

save_videos_grid(video, f"./{prompt}.gif")

Related Papers:

  • Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
  • Stable Diffusion: High-Resolution Image Synthesis with Latent Diffusion Models