|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5792 |
|
- Rouge1: 19.178 |
|
- Rouge2: 11.1294 |
|
- Rougel: 18.8056 |
|
- Rougelsum: 18.8857 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 3.1482 | 1.0 | 1301 | 2.6708 | 17.2978 | 11.0922 | 17.1791 | 17.1414 | |
|
| 2.867 | 2.0 | 2602 | 2.6532 | 17.7932 | 10.2988 | 17.6139 | 17.6418 | |
|
| 2.74 | 3.0 | 3903 | 2.6575 | 19.2584 | 11.6796 | 18.98 | 19.0057 | |
|
| 3.0353 | 4.0 | 5204 | 2.5845 | 19.1599 | 11.2723 | 18.8132 | 18.8559 | |
|
| 2.9691 | 5.0 | 6505 | 2.5820 | 18.2435 | 9.5271 | 17.904 | 17.9735 | |
|
| 2.9221 | 6.0 | 7806 | 2.5784 | 18.5969 | 10.5778 | 18.2837 | 18.2395 | |
|
| 2.8944 | 7.0 | 9107 | 2.5738 | 18.6871 | 10.6402 | 18.4386 | 18.4199 | |
|
| 2.8636 | 8.0 | 10408 | 2.5792 | 19.178 | 11.1294 | 18.8056 | 18.8857 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|