Inference example

model_name='lamm-mit/BioinspiredLlama-3-1-8B-128k'

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    device_map="auto",
    torch_dtype =torch.bfloat16,
    attn_implementation="flash_attention_2"
)
model.config.use_cache = True
tokenizer = AutoTokenizer.from_pretrained(model_name)

Check https://huggingface.co/lamm-mit/BioinspiredLlama-3-1-8B-128k-dominant-protein-SS-structure for further examples use of the model for protein structural features prediction, including a fine-tuning script.

Function to interact with the model

def generate_response (text_input="What is spider silk?",
                       system_prompt='',
                       num_return_sequences=1,
                       temperature=1., #the higher the temperature, the more creative the model becomes
                       max_new_tokens=127,device='cuda',
                       add_special_tokens = False, #since tokenizer.apply_chat_template adds <|begin_of_text|> template already, set to False
                       num_beams=1,eos_token_id= [
                                            128001,
                                            128008,
                                            128009
                                          ], verbatim=False,
                       top_k = 50,
                       top_p = 0.9,
                       repetition_penalty=1.1,
                       messages=[],
                      ):

    if messages==[]: #start new messages dictionary
        if system_prompt != '': #include system prompt if provided
            messages.extend ([  {"role": "system", "content": system_prompt},  ])
        messages.extend ( [   {"role": "user", "content": text_input}, ])
        
    else: #if messages provided, will extend (make sure to add previous response as assistant message)
        messages.append ({"role": "user", "content": text_input})
        
    text_input = tokenizer.apply_chat_template(
            messages, 
            tokenize=False, 
            add_generation_prompt=True
    )
    inputs = tokenizer([text_input],  add_special_tokens = add_special_tokens,  return_tensors ='pt' ).to(device)
    if verbatim:
        print (inputs)
    with torch.no_grad():
          outputs = model.generate(**inputs,
                                   max_new_tokens=max_new_tokens,
                                   temperature=temperature, 
                                   num_beams=num_beams,
                                   top_k = top_k,eos_token_id=eos_token_id,
                                   top_p =top_p,
                                   num_return_sequences = num_return_sequences, 
                                   do_sample =True, repetition_penalty=repetition_penalty,
                                  )
    outputs=outputs[:, inputs["input_ids"].shape[1]:]
    return tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True), messages             

Usage:

res,_= generate_response (text_input = "What is collagen?", system_prompt = 'You are a materials scientist.',
                      num_return_sequences=1,
                      temperature=1., #the higher the temperature, the more creative the model becomes
                      max_new_tokens=127,
                      num_beams=1,  
                      top_k = 50, top_p =0.9, repetition_penalty=1.1,
                       
                      )
print (res[0])

To realize multi-turn interactions, see this example:

res, messages = generate_response (text_input="What is spider silk?", messages=[])
messages.append ({"role": "assistant", "content": res[0]}, ) #append result to messages dict 
print (res)
res, messages = generate_response (text_input="Explain this result in detail.", messages=messages)
messages.append ({"role": "assistant", "content": res[0]}, ) #append result to messages dict 
print (res)
res, messages = generate_response (text_input="Provide this in JSON format.", messages=messages)
messages.append ({"role": "assistant", "content": res[0]}) #append result to messages dict 
print (res)

Fine-tuning script

See (https://huggingface.co/lamm-mit/BioinspiredLlama-3-1-8B-128k-dominant-protein-SS-structure) for a Colab fine-tuning script.

Downloads last month
21
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lamm-mit/BioinspiredLlama-3-1-8B-128k

Finetunes
1 model

Spaces using lamm-mit/BioinspiredLlama-3-1-8B-128k 6

Collection including lamm-mit/BioinspiredLlama-3-1-8B-128k