|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Helsinki-NLP/opus_paracrawl |
|
- turuta/Multi30k-uk |
|
language: |
|
- uk |
|
- en |
|
metrics: |
|
- bleu |
|
library_name: peft |
|
pipeline_tag: text-generation |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
tags: |
|
- translation |
|
model-index: |
|
- name: Dragoman |
|
results: |
|
- task: |
|
type: translation |
|
name: English-Ukrainian Translation |
|
dataset: |
|
type: facebook/flores |
|
name: FLORES-101 |
|
config: eng_Latn-ukr_Cyrl |
|
split: devtest |
|
metrics: |
|
- type: bleu |
|
value: 32.34 |
|
name: Test BLEU |
|
widget: |
|
- text: "[INST] who holds this neighborhood? [/INST]" |
|
--- |
|
|
|
# Dragoman: English-Ukrainian Machine Translation Model |
|
|
|
## Model Description |
|
|
|
The Dragoman is a sentence-level SOTA English-Ukrainian translation model. It's trained using a two-phase pipeline: pretraining on cleaned [Paracrawl](https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl) dataset and unsupervised data selection phase on [turuta/Multi30k-uk](https://huggingface.co/datasets/turuta/Multi30k-uk). |
|
|
|
By using a two-phase data cleaning and data selection approach we have achieved SOTA performance on FLORES-101 English-Ukrainian devtest subset with **BLEU** `32.34`. |
|
|
|
|
|
## Model Details |
|
|
|
- **Developed by:** Yurii Paniv, Dmytro Chaplynskyi, Nikita Trynus, Volodymyr Kyrylov |
|
- **Model type:** Translation model |
|
- **Language(s):** |
|
- Source Language: English |
|
- Target Language: Ukrainian |
|
- **License:** Apache 2.0 |
|
|
|
## Model Use Cases |
|
|
|
We designed this model for sentence-level English -> Ukrainian translation. |
|
Performance on multi-sentence texts is not guaranteed, please be aware. |
|
|
|
|
|
#### Running the model |
|
|
|
|
|
```python |
|
# pip install bitsandbytes transformers peft torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
config = PeftConfig.from_pretrained("lang-uk/dragoman") |
|
quant_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=float16, |
|
bnb_4bit_use_double_quant=False, |
|
) |
|
|
|
model = MistralForCausalLM.from_pretrained( |
|
"mistralai/Mistral-7B-v0.1", quantization_config=quant_config |
|
) |
|
model = PeftModel.from_pretrained(model, "lang-uk/dragoman").to("cuda") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"mistralai/Mistral-7B-v0.1", use_fast=False, add_bos_token=False |
|
) |
|
|
|
input_text = "[INST] who holds this neighborhood? [/INST]" # model input should adhere to this format |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Training Dataset and Resources |
|
|
|
Training code: [lang-uk/dragoman](https://github.com/lang-uk/dragoman) |
|
Cleaned Paracrawl: [lang-uk/paracrawl_3m](https://huggingface.co/datasets/lang-uk/paracrawl_3m) |
|
Cleaned Multi30K: [lang-uk/multi30k-extended-17k](https://huggingface.co/datasets/lang-uk/multi30k-extended-17k) |
|
|
|
|
|
|
|
### Benchmark Results against other models on FLORES-101 devset |
|
|
|
|
|
| **Model** | **BLEU** $\uparrow$ | **spBLEU** | **chrF** | **chrF++** | |
|
|---------------------------------------------|---------------------|-------------|----------|------------| |
|
| **Finetuned** | | | | | |
|
| Dragoman P, 10 beams | 30.38 | 37.93 | 59.49 | 56.41 | |
|
| Dragoman PT, 10 beams | **32.34** | **39.93** | **60.72**| **57.82** | |
|
|---------------------------------------------|---------------------|-------------|----------|------------| |
|
| **Zero shot and few shot** | | | | | |
|
| LLaMa-2-7B 2-shot | 20.1 | 26.78 | 49.22 | 46.29 | |
|
| RWKV-5-World-7B 0-shot | 21.06 | 26.20 | 49.46 | 46.46 | |
|
| gpt-4 10-shot | 29.48 | 37.94 | 58.37 | 55.38 | |
|
| gpt-4-turbo-preview 0-shot | 30.36 | 36.75 | 59.18 | 56.19 | |
|
| Google Translate 0-shot | 25.85 | 32.49 | 55.88 | 52.48 | |
|
|---------------------------------------------|---------------------|-------------|----------|------------| |
|
| **Pretrained** | | | | | |
|
| NLLB 3B, 10 beams | 30.46 | 37.22 | 58.11 | 55.32 | |
|
| OPUS-MT, 10 beams | 32.2 | 39.76 | 60.23 | 57.38 | |
|
|
|
|
|
## Citation |
|
|
|
TBD |
|
|
|
|
|
|
|
|