ESPnet2 TTS model
language-and-voice-lab/talromur_f_loudnorm_xvector_finetune_fastspeech2
This model was trained by G-Thor using talromur recipe in espnet.
Demo: How to use in ESPnet2
Follow the ESPnet installation instructions if you haven't done that already.
cd espnet
git checkout d0047402e830a3c53e8b590064af4bf70415fb3b
pip install -e .
cd egs2/talromur/tts1
./run.sh --skip_data_prep false --skip_train true --download_model language-and-voice-lab/talromur_f_loudnorm_xvector_finetune_fastspeech2
TTS config
expand
config: ./conf/tuning/finetune_xvector_fastspeech2.yaml
print_config: false
log_level: INFO
drop_last_iter: false
dry_run: false
iterator_type: sequence
valid_iterator_type: null
output_dir: exp/tts_finetune_f_loudnorm_xvector_fastspeech2
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 50
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
- - train
- loss
- min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 8
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
use_adapter: false
adapter: lora
save_strategy: all
adapter_conf: {}
pretrain_path: null
init_param:
- /users/home/gunnaro/talromur_1and2_spk_avg_xvector_fastspeech2/exp/tts_xvector_fastspeech2_spk_avg_combined/valid.loss.ave_5best.pth:tts:tts
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 800
batch_size: 20
valid_batch_size: null
batch_bins: 4500000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_f/train/text_shape.phn
- exp/tts_stats_f/train/speech_shape
valid_shape_file:
- exp/tts_stats_f/valid/text_shape.phn
- exp/tts_stats_f/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
shuffle_within_batch: false
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
chunk_default_fs: null
train_data_path_and_name_and_type:
- - dump/raw/train_f/text
- text
- text
- - data/train_f/durations
- durations
- text_int
- - dump/raw/train_f/wav.scp
- speech
- sound
- - dump/xvector/train_f/xvector.scp
- spembs
- kaldi_ark
valid_data_path_and_name_and_type:
- - dump/raw/dev_f/text
- text
- text
- - data/dev_f/durations
- durations
- text_int
- - dump/raw/dev_f/wav.scp
- speech
- sound
- - dump/xvector/dev_f/xvector.scp
- spembs
- kaldi_ark
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
allow_multi_rates: false
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
lr: 0.1
scheduler: noamlr
scheduler_conf:
model_size: 384
warmup_steps: 4000
token_list:
- <blank>
- <unk>
- a
- r
- sil
- I
- t
- n
- s
- D
- Y
- E
- l
- v
- m
- h
- k
- j
- G
- T
- f
- p
- 'E:'
- c
- i
- 'au:'
- 'O:'
- 'a:'
- ei
- 'i:'
- r_0
- t_h
- O
- k_h
- ou
- ai
- '9'
- au
- 'I:'
- 'ou:'
- u
- 'ei:'
- N
- l_0
- 'u:'
- n_0
- '9:'
- 'ai:'
- 9i
- c_h
- p_h
- x
- C
- '9i:'
- 'Y:'
- J
- N_0
- m_0
- Oi
- Yi
- J_0
- spn
- '1'
- '7'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: phn
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
feats_extract: fbank
feats_extract_conf:
n_fft: 1024
hop_length: 256
win_length: null
fs: 22050
fmin: 80
fmax: 7600
n_mels: 80
normalize: global_mvn
normalize_conf:
stats_file: exp/tts_stats_f/train/feats_stats.npz
tts: fastspeech2
tts_conf:
adim: 384
aheads: 2
elayers: 4
eunits: 1536
dlayers: 4
dunits: 1536
positionwise_layer_type: conv1d
positionwise_conv_kernel_size: 3
duration_predictor_layers: 2
duration_predictor_chans: 256
duration_predictor_kernel_size: 3
postnet_layers: 5
postnet_filts: 5
postnet_chans: 256
use_masking: true
use_scaled_pos_enc: true
encoder_normalize_before: true
decoder_normalize_before: true
reduction_factor: 1
init_type: xavier_uniform
init_enc_alpha: 1.0
init_dec_alpha: 1.0
transformer_enc_dropout_rate: 0.2
transformer_enc_positional_dropout_rate: 0.2
transformer_enc_attn_dropout_rate: 0.2
transformer_dec_dropout_rate: 0.2
transformer_dec_positional_dropout_rate: 0.2
transformer_dec_attn_dropout_rate: 0.2
pitch_predictor_layers: 5
pitch_predictor_chans: 256
pitch_predictor_kernel_size: 5
pitch_predictor_dropout: 0.5
pitch_embed_kernel_size: 1
pitch_embed_dropout: 0.0
stop_gradient_from_pitch_predictor: true
energy_predictor_layers: 2
energy_predictor_chans: 256
energy_predictor_kernel_size: 3
energy_predictor_dropout: 0.5
energy_embed_kernel_size: 1
energy_embed_dropout: 0.0
stop_gradient_from_energy_predictor: false
spk_embed_dim: 512
spk_embed_integration_type: add
pitch_extract: dio
pitch_extract_conf:
fs: 22050
n_fft: 1024
hop_length: 256
f0max: 400
f0min: 80
reduction_factor: 1
pitch_normalize: global_mvn
pitch_normalize_conf:
stats_file: exp/tts_stats_f/train/pitch_stats.npz
energy_extract: energy
energy_extract_conf:
fs: 22050
n_fft: 1024
hop_length: 256
win_length: null
reduction_factor: 1
energy_normalize: global_mvn
energy_normalize_conf:
stats_file: exp/tts_stats_f/train/energy_stats.npz
required:
- output_dir
- token_list
version: '202402'
distributed: false
Citing ESPnet
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.