metadata
language:
- az
metrics:
- accuracy
- f1
widget:
- text: کریم خان زندین اؤلومو ایله خانلیق یئنیدن موستقیل سیاست یئریتمگه باشلادی .
example_title: تاریخ
- text: کیمیا علیزاده زنوزی اصیللی ایرانلی تکواندو اویونچوسودور .
example_title: ایدمان
- text: >-
خزر دنیزی بؤیوکلوگونه و بعضی فیزیکی جوغرافی علامتلرینه گؤره دونیانین ان
بؤیوک گؤلودور .
example_title: جوغرافیا
- text: >-
گولخانی اؤزبک کلاسیک شاعیری ، ادیبی ، یازیچی و اؤزبک ادبیاتینین ساتیریک
مکتبینین قوروجولاریندان بیریدیر .
example_title: ادبیات
Text Classification Model
- Type: Fine-tuned BERT-based text classification model
- Description: This model has been fine-tuned using AzerBERT for text classification tasks. It is designed to categorize text into one of the following four categories: literature, sports, history, and geography.
How to use
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-classification", model="language-ml-lab/classification-azb")
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("language-ml-lab/classification-azb")
model = AutoModelForSequenceClassification.from_pretrained("language-ml-lab/classification-azb")