Built with Axolotl

See axolotl config

axolotl version: 0.5.0

base_model: meta-llama/Llama-3.2-3B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false

#wget -O dataset_2000.jsonl http://94.130.230.31/dataset_2000.jsonl
chat_template: llama3
datasets:
  - path: ./dataset_2000.jsonl
    type: chat_template
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/dippy-2

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 12
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16: true
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

outputs/dippy-2

This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss
1.9507 0.0153 1 1.9943
1.714 0.2605 17 1.7193
1.5507 0.5211 34 1.7040
1.6354 0.7816 51 1.6666
0.9188 1.0383 68 1.6559
0.8897 1.2989 85 1.6953
0.9014 1.5594 102 1.7119
0.8517 1.8199 119 1.7209
0.4448 2.0843 136 1.7969
0.4053 2.3448 153 1.8347
0.3723 2.6054 170 1.8777
0.339 2.8659 187 1.8751
0.1614 3.1264 204 2.0658
0.1804 3.3870 221 2.0643
0.1881 3.6475 238 2.0924
0.1762 3.9080 255 2.0624
0.195 4.1686 272 2.3268
0.0649 4.4291 289 2.2718
0.0786 4.6897 306 2.2569
0.0763 4.9502 323 2.2521
0.0509 5.2107 340 2.4546
0.0374 5.4713 357 2.4693
0.0216 5.7318 374 2.4763
0.0272 5.9923 391 2.5110
0.0117 6.2490 408 2.7330
0.0115 6.5096 425 2.6403
0.0092 6.7701 442 2.7747
0.0064 7.0268 459 2.7342
0.0059 7.2874 476 2.8930
0.0065 7.5479 493 2.9133
0.0059 7.8084 510 2.9216
0.0058 8.0690 527 2.9435
0.0046 8.3295 544 3.0068
0.0051 8.5900 561 3.0261
0.0044 8.8506 578 3.0278
0.0035 9.1073 595 3.0368
0.0038 9.3678 612 3.0577
0.004 9.6284 629 3.0710
0.0041 9.8889 646 3.0796
0.0038 10.1533 663 3.0823
0.0039 10.4138 680 3.0844
0.0041 10.6743 697 3.0886
0.004 10.9349 714 3.0952
0.0038 11.1992 731 3.0955
0.0033 11.4598 748 3.0949
0.0044 11.7203 765 3.0961

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lapaliv/lapaliv-0002

Adapter
(52)
this model