File size: 5,487 Bytes
26a4129 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
library_name: peft
license: llama3.2
base_model: meta-llama/Llama-3.2-3B
tags:
- generated_from_trainer
model-index:
- name: outputs/dippy-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.5.0`
```yaml
base_model: meta-llama/Llama-3.2-3B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
#wget -O dataset_2000.jsonl http://94.130.230.31/dataset_2000.jsonl
chat_template: llama3
datasets:
- path: ./dataset_2000.jsonl
type: chat_template
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/dippy-2
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 12
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# outputs/dippy-2
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0961
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.9507 | 0.0153 | 1 | 1.9943 |
| 1.714 | 0.2605 | 17 | 1.7193 |
| 1.5507 | 0.5211 | 34 | 1.7040 |
| 1.6354 | 0.7816 | 51 | 1.6666 |
| 0.9188 | 1.0383 | 68 | 1.6559 |
| 0.8897 | 1.2989 | 85 | 1.6953 |
| 0.9014 | 1.5594 | 102 | 1.7119 |
| 0.8517 | 1.8199 | 119 | 1.7209 |
| 0.4448 | 2.0843 | 136 | 1.7969 |
| 0.4053 | 2.3448 | 153 | 1.8347 |
| 0.3723 | 2.6054 | 170 | 1.8777 |
| 0.339 | 2.8659 | 187 | 1.8751 |
| 0.1614 | 3.1264 | 204 | 2.0658 |
| 0.1804 | 3.3870 | 221 | 2.0643 |
| 0.1881 | 3.6475 | 238 | 2.0924 |
| 0.1762 | 3.9080 | 255 | 2.0624 |
| 0.195 | 4.1686 | 272 | 2.3268 |
| 0.0649 | 4.4291 | 289 | 2.2718 |
| 0.0786 | 4.6897 | 306 | 2.2569 |
| 0.0763 | 4.9502 | 323 | 2.2521 |
| 0.0509 | 5.2107 | 340 | 2.4546 |
| 0.0374 | 5.4713 | 357 | 2.4693 |
| 0.0216 | 5.7318 | 374 | 2.4763 |
| 0.0272 | 5.9923 | 391 | 2.5110 |
| 0.0117 | 6.2490 | 408 | 2.7330 |
| 0.0115 | 6.5096 | 425 | 2.6403 |
| 0.0092 | 6.7701 | 442 | 2.7747 |
| 0.0064 | 7.0268 | 459 | 2.7342 |
| 0.0059 | 7.2874 | 476 | 2.8930 |
| 0.0065 | 7.5479 | 493 | 2.9133 |
| 0.0059 | 7.8084 | 510 | 2.9216 |
| 0.0058 | 8.0690 | 527 | 2.9435 |
| 0.0046 | 8.3295 | 544 | 3.0068 |
| 0.0051 | 8.5900 | 561 | 3.0261 |
| 0.0044 | 8.8506 | 578 | 3.0278 |
| 0.0035 | 9.1073 | 595 | 3.0368 |
| 0.0038 | 9.3678 | 612 | 3.0577 |
| 0.004 | 9.6284 | 629 | 3.0710 |
| 0.0041 | 9.8889 | 646 | 3.0796 |
| 0.0038 | 10.1533 | 663 | 3.0823 |
| 0.0039 | 10.4138 | 680 | 3.0844 |
| 0.0041 | 10.6743 | 697 | 3.0886 |
| 0.004 | 10.9349 | 714 | 3.0952 |
| 0.0038 | 11.1992 | 731 | 3.0955 |
| 0.0033 | 11.4598 | 748 | 3.0949 |
| 0.0044 | 11.7203 | 765 | 3.0961 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |