CheckGuard / CheckGuard Models /wholeimage /drawer /finetune_lora_llava_mistral.sh
larry5's picture
Upload the PEFT-MLLM models
0014463 verified
#!/bin/bash
# Use first parameter as GPU IDs, default to "0,1,2,3" if not provided
GPU_IDS=${1:-0,1,2,3}
CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29606\
llava/train/train_mem.py \
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
--deepspeed ./scripts/zero3.json \
--model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
--version mistral_instruct \
--data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/drawer/drawer_dataset.json \
--image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
--vision_tower openai/clip-vit-large-patch14-336 \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--mm_patch_merge_type spatial_unpad \
--image_aspect_ratio anyres \
--group_by_modality_length False \
--bf16 False \
--fp16 True \
--output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model \
--num_train_epochs 1 \
--per_device_train_batch_size 10 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 500 \
--save_total_limit 5 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.05 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 4096 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to wandb \