Upload the PEFT-MLLM models
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- CheckGuard Models/wholeimage/amount/finetune_lora_llava_mistral.sh +39 -0
- CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/README.md +202 -0
- CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_config.json +34 -0
- CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors +3 -0
- CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/config.json +70 -0
- CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin +3 -0
- CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/trainer_state.json +2010 -0
- CheckGuard Models/wholeimage/bank/finetune_lora_llava_mistral.sh +43 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/README.md +202 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_config.json +34 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md +202 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json +34 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest +1 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json +24 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json +44 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json +3021 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py +587 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/config.json +70 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin +3 -0
- CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/trainer_state.json +3360 -0
- CheckGuard Models/wholeimage/bank_no/finetune_lora_llava_mistral.sh +43 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/README.md +202 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json +34 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md +202 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json +34 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest +1 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json +24 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json +44 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json +3021 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py +587 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/config.json +70 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin +3 -0
- CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json +3276 -0
- CheckGuard Models/wholeimage/check_no/finetune_lora_llava_mistral.sh +43 -0
CheckGuard Models/wholeimage/amount/finetune_lora_llava_mistral.sh
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
deepspeed llava/train/train_mem.py \
|
4 |
+
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
|
5 |
+
--deepspeed ./scripts/zero3.json \
|
6 |
+
--model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
|
7 |
+
--version mistral_instruct \
|
8 |
+
--data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/amount/modified_path_to_train_val_human-gpt-whole-check.json \
|
9 |
+
--image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
|
10 |
+
--vision_tower openai/clip-vit-large-patch14-336 \
|
11 |
+
--mm_projector_type mlp2x_gelu \
|
12 |
+
--mm_vision_select_layer -2 \
|
13 |
+
--mm_use_im_start_end False \
|
14 |
+
--mm_use_im_patch_token False \
|
15 |
+
--mm_patch_merge_type spatial_unpad \
|
16 |
+
--image_aspect_ratio anyres \
|
17 |
+
--group_by_modality_length False \
|
18 |
+
--bf16 False \
|
19 |
+
--fp16 True \
|
20 |
+
--output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model \
|
21 |
+
--num_train_epochs 1 \
|
22 |
+
--per_device_train_batch_size 10 \
|
23 |
+
--per_device_eval_batch_size 1 \
|
24 |
+
--gradient_accumulation_steps 1 \
|
25 |
+
--evaluation_strategy "no" \
|
26 |
+
--save_strategy "steps" \
|
27 |
+
--save_steps 500 \
|
28 |
+
--save_total_limit 5 \
|
29 |
+
--learning_rate 2e-5 \
|
30 |
+
--weight_decay 0. \
|
31 |
+
--warmup_ratio 0.05 \
|
32 |
+
--lr_scheduler_type "cosine" \
|
33 |
+
--logging_steps 1 \
|
34 |
+
--tf32 True \
|
35 |
+
--model_max_length 4096 \
|
36 |
+
--gradient_checkpointing True \
|
37 |
+
--dataloader_num_workers 4 \
|
38 |
+
--lazy_preprocess True \
|
39 |
+
--report_to wandb \
|
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: liuhaotian/llava-v1.6-mistral-7b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"up_proj",
|
24 |
+
"k_proj",
|
25 |
+
"q_proj",
|
26 |
+
"down_proj",
|
27 |
+
"o_proj",
|
28 |
+
"v_proj",
|
29 |
+
"gate_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf2247d527585fc799edb906388c1be818fe3bb61e79cbe1b59d3311b2b6e5e9
|
3 |
+
size 708924928
|
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/config.json
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaMistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"freeze_mm_mlp_adapter": false,
|
10 |
+
"freeze_mm_vision_resampler": false,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"image_aspect_ratio": "anyres",
|
14 |
+
"image_crop_resolution": 224,
|
15 |
+
"image_grid_pinpoints": [
|
16 |
+
[
|
17 |
+
336,
|
18 |
+
672
|
19 |
+
],
|
20 |
+
[
|
21 |
+
672,
|
22 |
+
336
|
23 |
+
],
|
24 |
+
[
|
25 |
+
672,
|
26 |
+
672
|
27 |
+
],
|
28 |
+
[
|
29 |
+
1008,
|
30 |
+
336
|
31 |
+
],
|
32 |
+
[
|
33 |
+
336,
|
34 |
+
1008
|
35 |
+
]
|
36 |
+
],
|
37 |
+
"image_split_resolution": 224,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"intermediate_size": 14336,
|
40 |
+
"max_position_embeddings": 32768,
|
41 |
+
"mm_hidden_size": 1024,
|
42 |
+
"mm_patch_merge_type": "spatial_unpad",
|
43 |
+
"mm_projector_lr": 2e-05,
|
44 |
+
"mm_projector_type": "mlp2x_gelu",
|
45 |
+
"mm_resampler_type": null,
|
46 |
+
"mm_use_im_patch_token": false,
|
47 |
+
"mm_use_im_start_end": false,
|
48 |
+
"mm_vision_select_feature": "patch",
|
49 |
+
"mm_vision_select_layer": -2,
|
50 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
51 |
+
"mm_vision_tower_lr": 2e-06,
|
52 |
+
"model_type": "llava_mistral",
|
53 |
+
"num_attention_heads": 32,
|
54 |
+
"num_hidden_layers": 32,
|
55 |
+
"num_key_value_heads": 8,
|
56 |
+
"rms_norm_eps": 1e-05,
|
57 |
+
"rope_theta": 1000000.0,
|
58 |
+
"sliding_window": null,
|
59 |
+
"tie_word_embeddings": false,
|
60 |
+
"tokenizer_model_max_length": 4096,
|
61 |
+
"tokenizer_padding_side": "right",
|
62 |
+
"torch_dtype": "bfloat16",
|
63 |
+
"transformers_version": "4.37.2",
|
64 |
+
"tune_mm_mlp_adapter": false,
|
65 |
+
"tune_mm_vision_resampler": false,
|
66 |
+
"unfreeze_mm_vision_tower": true,
|
67 |
+
"use_cache": true,
|
68 |
+
"use_mm_proj": true,
|
69 |
+
"vocab_size": 32000
|
70 |
+
}
|
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:122abc8f0749c93d63088c8fbc3c18949d0e6fe8a9c9bc719442920c7224b9fc
|
3 |
+
size 41961648
|
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/trainer_state.json
ADDED
@@ -0,0 +1,2010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 330,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 1.1764705882352942e-06,
|
14 |
+
"loss": 0.2385,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 2.3529411764705885e-06,
|
20 |
+
"loss": 0.2477,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 2.3529411764705885e-06,
|
26 |
+
"loss": 0.297,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 3.529411764705883e-06,
|
32 |
+
"loss": 0.1694,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.02,
|
37 |
+
"learning_rate": 4.705882352941177e-06,
|
38 |
+
"loss": 0.1294,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.02,
|
43 |
+
"learning_rate": 5.882352941176471e-06,
|
44 |
+
"loss": 0.1461,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.02,
|
49 |
+
"learning_rate": 7.058823529411766e-06,
|
50 |
+
"loss": 0.1272,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.02,
|
55 |
+
"learning_rate": 7.058823529411766e-06,
|
56 |
+
"loss": 0.1176,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.03,
|
61 |
+
"learning_rate": 8.23529411764706e-06,
|
62 |
+
"loss": 0.0666,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.03,
|
67 |
+
"learning_rate": 9.411764705882354e-06,
|
68 |
+
"loss": 0.1199,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.03,
|
73 |
+
"learning_rate": 1.0588235294117648e-05,
|
74 |
+
"loss": 0.1216,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.04,
|
79 |
+
"learning_rate": 1.1764705882352942e-05,
|
80 |
+
"loss": 0.1258,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.04,
|
85 |
+
"learning_rate": 1.2941176470588238e-05,
|
86 |
+
"loss": 0.0381,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.04,
|
91 |
+
"learning_rate": 1.4117647058823532e-05,
|
92 |
+
"loss": 0.0318,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.05,
|
97 |
+
"learning_rate": 1.5294117647058822e-05,
|
98 |
+
"loss": 0.1278,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.05,
|
103 |
+
"learning_rate": 1.647058823529412e-05,
|
104 |
+
"loss": 0.1014,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.05,
|
109 |
+
"learning_rate": 1.7647058823529414e-05,
|
110 |
+
"loss": 0.0555,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.05,
|
115 |
+
"learning_rate": 1.8823529411764708e-05,
|
116 |
+
"loss": 0.0576,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.06,
|
121 |
+
"learning_rate": 2e-05,
|
122 |
+
"loss": 0.0987,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.06,
|
127 |
+
"learning_rate": 1.9999496293646753e-05,
|
128 |
+
"loss": 0.1177,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.06,
|
133 |
+
"learning_rate": 1.999798522533102e-05,
|
134 |
+
"loss": 0.1623,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.07,
|
139 |
+
"learning_rate": 1.9995466947279753e-05,
|
140 |
+
"loss": 0.0899,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.07,
|
145 |
+
"learning_rate": 1.9991941713187477e-05,
|
146 |
+
"loss": 0.0615,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.07,
|
151 |
+
"learning_rate": 1.9987409878190752e-05,
|
152 |
+
"loss": 0.068,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.08,
|
157 |
+
"learning_rate": 1.99818718988324e-05,
|
158 |
+
"loss": 0.0909,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.08,
|
163 |
+
"learning_rate": 1.9975328333015497e-05,
|
164 |
+
"loss": 0.0658,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.08,
|
169 |
+
"learning_rate": 1.9967779839947172e-05,
|
170 |
+
"loss": 0.0251,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.08,
|
175 |
+
"learning_rate": 1.9959227180072216e-05,
|
176 |
+
"loss": 0.0526,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.09,
|
181 |
+
"learning_rate": 1.9949671214996448e-05,
|
182 |
+
"loss": 0.0495,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.09,
|
187 |
+
"learning_rate": 1.993911290739993e-05,
|
188 |
+
"loss": 0.034,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.09,
|
193 |
+
"learning_rate": 1.992755332093999e-05,
|
194 |
+
"loss": 0.0678,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.1,
|
199 |
+
"learning_rate": 1.9914993620144055e-05,
|
200 |
+
"loss": 0.063,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.1,
|
205 |
+
"learning_rate": 1.990143507029234e-05,
|
206 |
+
"loss": 0.0237,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.1,
|
211 |
+
"learning_rate": 1.9886879037290385e-05,
|
212 |
+
"loss": 0.0773,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.11,
|
217 |
+
"learning_rate": 1.9871326987531453e-05,
|
218 |
+
"loss": 0.0357,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.11,
|
223 |
+
"learning_rate": 1.98547804877488e-05,
|
224 |
+
"loss": 0.1064,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.11,
|
229 |
+
"learning_rate": 1.983724120485783e-05,
|
230 |
+
"loss": 0.083,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.12,
|
235 |
+
"learning_rate": 1.9818710905788195e-05,
|
236 |
+
"loss": 0.1053,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.12,
|
241 |
+
"learning_rate": 1.9799191457305767e-05,
|
242 |
+
"loss": 0.0343,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.12,
|
247 |
+
"learning_rate": 1.977868482582459e-05,
|
248 |
+
"loss": 0.1018,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.12,
|
253 |
+
"learning_rate": 1.9757193077208776e-05,
|
254 |
+
"loss": 0.1488,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.13,
|
259 |
+
"learning_rate": 1.9734718376564386e-05,
|
260 |
+
"loss": 0.0511,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.13,
|
265 |
+
"learning_rate": 1.9711262988021322e-05,
|
266 |
+
"loss": 0.0643,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.13,
|
271 |
+
"learning_rate": 1.968682927450523e-05,
|
272 |
+
"loss": 0.0184,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.14,
|
277 |
+
"learning_rate": 1.9661419697499455e-05,
|
278 |
+
"loss": 0.0483,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.14,
|
283 |
+
"learning_rate": 1.9635036816797072e-05,
|
284 |
+
"loss": 0.1308,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.14,
|
289 |
+
"learning_rate": 1.960768329024301e-05,
|
290 |
+
"loss": 0.0618,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.15,
|
295 |
+
"learning_rate": 1.957936187346628e-05,
|
296 |
+
"loss": 0.0513,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.15,
|
301 |
+
"learning_rate": 1.955007541960241e-05,
|
302 |
+
"loss": 0.0517,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.15,
|
307 |
+
"learning_rate": 1.9519826879005964e-05,
|
308 |
+
"loss": 0.0638,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.15,
|
313 |
+
"learning_rate": 1.948861929895336e-05,
|
314 |
+
"loss": 0.0841,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.16,
|
319 |
+
"learning_rate": 1.945645582333587e-05,
|
320 |
+
"loss": 0.0994,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.16,
|
325 |
+
"learning_rate": 1.9423339692342885e-05,
|
326 |
+
"loss": 0.0906,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.16,
|
331 |
+
"learning_rate": 1.9389274242135528e-05,
|
332 |
+
"loss": 0.2008,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.17,
|
337 |
+
"learning_rate": 1.9354262904510544e-05,
|
338 |
+
"loss": 0.0152,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.17,
|
343 |
+
"learning_rate": 1.9318309206554567e-05,
|
344 |
+
"loss": 0.0232,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.17,
|
349 |
+
"learning_rate": 1.9281416770288806e-05,
|
350 |
+
"loss": 0.057,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.18,
|
355 |
+
"learning_rate": 1.924358931230418e-05,
|
356 |
+
"loss": 0.1069,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.18,
|
361 |
+
"learning_rate": 1.920483064338687e-05,
|
362 |
+
"loss": 0.034,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.18,
|
367 |
+
"learning_rate": 1.9165144668134426e-05,
|
368 |
+
"loss": 0.052,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.18,
|
373 |
+
"learning_rate": 1.9124535384562423e-05,
|
374 |
+
"loss": 0.1445,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.19,
|
379 |
+
"learning_rate": 1.9083006883701688e-05,
|
380 |
+
"loss": 0.0578,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.19,
|
385 |
+
"learning_rate": 1.904056334918617e-05,
|
386 |
+
"loss": 0.0426,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.19,
|
391 |
+
"learning_rate": 1.8997209056831462e-05,
|
392 |
+
"loss": 0.0214,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.2,
|
397 |
+
"learning_rate": 1.8952948374204066e-05,
|
398 |
+
"loss": 0.084,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.2,
|
403 |
+
"learning_rate": 1.8907785760181392e-05,
|
404 |
+
"loss": 0.1055,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.2,
|
409 |
+
"learning_rate": 1.8861725764502557e-05,
|
410 |
+
"loss": 0.0333,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.21,
|
415 |
+
"learning_rate": 1.881477302731006e-05,
|
416 |
+
"loss": 0.0334,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.21,
|
421 |
+
"learning_rate": 1.87669322786823e-05,
|
422 |
+
"loss": 0.0513,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.21,
|
427 |
+
"learning_rate": 1.8718208338157082e-05,
|
428 |
+
"loss": 0.0324,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.22,
|
433 |
+
"learning_rate": 1.866860611424609e-05,
|
434 |
+
"loss": 0.033,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.22,
|
439 |
+
"learning_rate": 1.8618130603940386e-05,
|
440 |
+
"loss": 0.0379,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.22,
|
445 |
+
"learning_rate": 1.856678689220701e-05,
|
446 |
+
"loss": 0.0403,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.22,
|
451 |
+
"learning_rate": 1.851458015147673e-05,
|
452 |
+
"loss": 0.0489,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.23,
|
457 |
+
"learning_rate": 1.846151564112294e-05,
|
458 |
+
"loss": 0.0599,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.23,
|
463 |
+
"learning_rate": 1.840759870693184e-05,
|
464 |
+
"loss": 0.0654,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.23,
|
469 |
+
"learning_rate": 1.8352834780563888e-05,
|
470 |
+
"loss": 0.0526,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.24,
|
475 |
+
"learning_rate": 1.8297229379006614e-05,
|
476 |
+
"loss": 0.0105,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.24,
|
481 |
+
"learning_rate": 1.8240788104018824e-05,
|
482 |
+
"loss": 0.0394,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.24,
|
487 |
+
"learning_rate": 1.8183516641566278e-05,
|
488 |
+
"loss": 0.0573,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.25,
|
493 |
+
"learning_rate": 1.8125420761248878e-05,
|
494 |
+
"loss": 0.0478,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.25,
|
499 |
+
"learning_rate": 1.806650631571943e-05,
|
500 |
+
"loss": 0.0633,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.25,
|
505 |
+
"learning_rate": 1.8006779240094024e-05,
|
506 |
+
"loss": 0.0423,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.25,
|
511 |
+
"learning_rate": 1.7946245551354156e-05,
|
512 |
+
"loss": 0.0618,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.26,
|
517 |
+
"learning_rate": 1.7884911347740556e-05,
|
518 |
+
"loss": 0.0658,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.26,
|
523 |
+
"learning_rate": 1.782278280813882e-05,
|
524 |
+
"loss": 0.0485,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.26,
|
529 |
+
"learning_rate": 1.775986619145697e-05,
|
530 |
+
"loss": 0.0468,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.27,
|
535 |
+
"learning_rate": 1.7696167835994927e-05,
|
536 |
+
"loss": 0.0558,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.27,
|
541 |
+
"learning_rate": 1.7631694158805945e-05,
|
542 |
+
"loss": 0.0518,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.27,
|
547 |
+
"learning_rate": 1.7566451655050197e-05,
|
548 |
+
"loss": 0.0684,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.28,
|
553 |
+
"learning_rate": 1.7500446897340408e-05,
|
554 |
+
"loss": 0.0304,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.28,
|
559 |
+
"learning_rate": 1.7433686535079736e-05,
|
560 |
+
"loss": 0.0397,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.28,
|
565 |
+
"learning_rate": 1.736617729379191e-05,
|
566 |
+
"loss": 0.1084,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.28,
|
571 |
+
"learning_rate": 1.7297925974443675e-05,
|
572 |
+
"loss": 0.0826,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.29,
|
577 |
+
"learning_rate": 1.7228939452759666e-05,
|
578 |
+
"loss": 0.0309,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.29,
|
583 |
+
"learning_rate": 1.7159224678529734e-05,
|
584 |
+
"loss": 0.0348,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.29,
|
589 |
+
"learning_rate": 1.7088788674908817e-05,
|
590 |
+
"loss": 0.097,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.3,
|
595 |
+
"learning_rate": 1.7017638537709426e-05,
|
596 |
+
"loss": 0.0897,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.3,
|
601 |
+
"learning_rate": 1.6945781434686783e-05,
|
602 |
+
"loss": 0.0614,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.3,
|
607 |
+
"learning_rate": 1.6873224604816753e-05,
|
608 |
+
"loss": 0.08,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.31,
|
613 |
+
"learning_rate": 1.679997535756657e-05,
|
614 |
+
"loss": 0.0126,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.31,
|
619 |
+
"learning_rate": 1.672604107215848e-05,
|
620 |
+
"loss": 0.0644,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.31,
|
625 |
+
"learning_rate": 1.6651429196826337e-05,
|
626 |
+
"loss": 0.0702,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.32,
|
631 |
+
"learning_rate": 1.6576147248065268e-05,
|
632 |
+
"loss": 0.0809,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.32,
|
637 |
+
"learning_rate": 1.6500202809874446e-05,
|
638 |
+
"loss": 0.0354,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.32,
|
643 |
+
"learning_rate": 1.6423603532993074e-05,
|
644 |
+
"loss": 0.1429,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.32,
|
649 |
+
"learning_rate": 1.634635713412964e-05,
|
650 |
+
"loss": 0.1142,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.33,
|
655 |
+
"learning_rate": 1.626847139518452e-05,
|
656 |
+
"loss": 0.034,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.33,
|
661 |
+
"learning_rate": 1.618995416246601e-05,
|
662 |
+
"loss": 0.0818,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.33,
|
667 |
+
"learning_rate": 1.6110813345899914e-05,
|
668 |
+
"loss": 0.0594,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.34,
|
673 |
+
"learning_rate": 1.6031056918232642e-05,
|
674 |
+
"loss": 0.0958,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.34,
|
679 |
+
"learning_rate": 1.595069291422807e-05,
|
680 |
+
"loss": 0.0418,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.34,
|
685 |
+
"learning_rate": 1.586972942985807e-05,
|
686 |
+
"loss": 0.0315,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.35,
|
691 |
+
"learning_rate": 1.5788174621486936e-05,
|
692 |
+
"loss": 0.0435,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.35,
|
697 |
+
"learning_rate": 1.570603670504969e-05,
|
698 |
+
"loss": 0.0596,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.35,
|
703 |
+
"learning_rate": 1.570603670504969e-05,
|
704 |
+
"loss": 0.048,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.35,
|
709 |
+
"learning_rate": 1.5623323955224404e-05,
|
710 |
+
"loss": 0.0352,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.36,
|
715 |
+
"learning_rate": 1.5540044704598588e-05,
|
716 |
+
"loss": 0.0264,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.36,
|
721 |
+
"learning_rate": 1.5456207342829777e-05,
|
722 |
+
"loss": 0.0378,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.36,
|
727 |
+
"learning_rate": 1.5371820315800316e-05,
|
728 |
+
"loss": 0.0519,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.37,
|
733 |
+
"learning_rate": 1.5286892124766546e-05,
|
734 |
+
"loss": 0.0559,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.37,
|
739 |
+
"learning_rate": 1.5201431325502332e-05,
|
740 |
+
"loss": 0.0708,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.37,
|
745 |
+
"learning_rate": 1.5115446527437193e-05,
|
746 |
+
"loss": 0.0823,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.38,
|
751 |
+
"learning_rate": 1.5028946392788934e-05,
|
752 |
+
"loss": 0.0345,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.38,
|
757 |
+
"learning_rate": 1.4941939635691036e-05,
|
758 |
+
"loss": 0.111,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.38,
|
763 |
+
"learning_rate": 1.4854435021314766e-05,
|
764 |
+
"loss": 0.0284,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.38,
|
769 |
+
"learning_rate": 1.4766441364986162e-05,
|
770 |
+
"loss": 0.1226,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.39,
|
775 |
+
"learning_rate": 1.467796753129797e-05,
|
776 |
+
"loss": 0.022,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.39,
|
781 |
+
"learning_rate": 1.4589022433216616e-05,
|
782 |
+
"loss": 0.0565,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.39,
|
787 |
+
"learning_rate": 1.4499615031184297e-05,
|
788 |
+
"loss": 0.0875,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.4,
|
793 |
+
"learning_rate": 1.4409754332216303e-05,
|
794 |
+
"loss": 0.0457,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.4,
|
799 |
+
"learning_rate": 1.431944938899363e-05,
|
800 |
+
"loss": 0.0776,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.4,
|
805 |
+
"learning_rate": 1.4228709298950998e-05,
|
806 |
+
"loss": 0.0397,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.41,
|
811 |
+
"learning_rate": 1.4137543203360382e-05,
|
812 |
+
"loss": 0.0278,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.41,
|
817 |
+
"learning_rate": 1.4045960286410093e-05,
|
818 |
+
"loss": 0.0204,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.41,
|
823 |
+
"learning_rate": 1.395396977427955e-05,
|
824 |
+
"loss": 0.0531,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.42,
|
829 |
+
"learning_rate": 1.3861580934209832e-05,
|
830 |
+
"loss": 0.0334,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.42,
|
835 |
+
"learning_rate": 1.376880307357009e-05,
|
836 |
+
"loss": 0.0389,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.42,
|
841 |
+
"learning_rate": 1.3675645538919884e-05,
|
842 |
+
"loss": 0.0571,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.42,
|
847 |
+
"learning_rate": 1.3582117715067628e-05,
|
848 |
+
"loss": 0.0352,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.43,
|
853 |
+
"learning_rate": 1.3488229024125142e-05,
|
854 |
+
"loss": 0.0062,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.43,
|
859 |
+
"learning_rate": 1.3393988924558445e-05,
|
860 |
+
"loss": 0.0489,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.43,
|
865 |
+
"learning_rate": 1.3299406910234917e-05,
|
866 |
+
"loss": 0.068,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.44,
|
871 |
+
"learning_rate": 1.3204492509466862e-05,
|
872 |
+
"loss": 0.0478,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.44,
|
877 |
+
"learning_rate": 1.3109255284051615e-05,
|
878 |
+
"loss": 0.1145,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.44,
|
883 |
+
"learning_rate": 1.3013704828308276e-05,
|
884 |
+
"loss": 0.0253,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.45,
|
889 |
+
"learning_rate": 1.2917850768111171e-05,
|
890 |
+
"loss": 0.0138,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.45,
|
895 |
+
"learning_rate": 1.282170275992012e-05,
|
896 |
+
"loss": 0.1083,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.45,
|
901 |
+
"learning_rate": 1.2725270489807637e-05,
|
902 |
+
"loss": 0.0708,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.45,
|
907 |
+
"learning_rate": 1.2628563672483147e-05,
|
908 |
+
"loss": 0.0144,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.46,
|
913 |
+
"learning_rate": 1.2531592050314308e-05,
|
914 |
+
"loss": 0.0628,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.46,
|
919 |
+
"learning_rate": 1.2434365392345553e-05,
|
920 |
+
"loss": 0.0475,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.46,
|
925 |
+
"learning_rate": 1.2336893493313946e-05,
|
926 |
+
"loss": 0.0161,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.47,
|
931 |
+
"learning_rate": 1.223918617266245e-05,
|
932 |
+
"loss": 0.084,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.47,
|
937 |
+
"learning_rate": 1.2141253273550698e-05,
|
938 |
+
"loss": 0.0494,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.47,
|
943 |
+
"learning_rate": 1.2043104661863386e-05,
|
944 |
+
"loss": 0.0293,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.48,
|
949 |
+
"learning_rate": 1.1944750225216363e-05,
|
950 |
+
"loss": 0.0837,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.48,
|
955 |
+
"learning_rate": 1.1846199871960557e-05,
|
956 |
+
"loss": 0.0479,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.48,
|
961 |
+
"learning_rate": 1.1747463530183781e-05,
|
962 |
+
"loss": 0.0752,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.48,
|
967 |
+
"learning_rate": 1.1648551146710557e-05,
|
968 |
+
"loss": 0.0242,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.49,
|
973 |
+
"learning_rate": 1.1549472686100079e-05,
|
974 |
+
"loss": 0.0322,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.49,
|
979 |
+
"learning_rate": 1.145023812964237e-05,
|
980 |
+
"loss": 0.0812,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.49,
|
985 |
+
"learning_rate": 1.1350857474352734e-05,
|
986 |
+
"loss": 0.0133,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.5,
|
991 |
+
"learning_rate": 1.1251340731964664e-05,
|
992 |
+
"loss": 0.093,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.5,
|
997 |
+
"learning_rate": 1.1151697927921242e-05,
|
998 |
+
"loss": 0.0377,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.5,
|
1003 |
+
"learning_rate": 1.1051939100365154e-05,
|
1004 |
+
"loss": 0.0561,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.51,
|
1009 |
+
"learning_rate": 1.0952074299127451e-05,
|
1010 |
+
"loss": 0.0556,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.51,
|
1015 |
+
"learning_rate": 1.0852113584715103e-05,
|
1016 |
+
"loss": 0.0567,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.51,
|
1021 |
+
"learning_rate": 1.0752067027297486e-05,
|
1022 |
+
"loss": 0.0722,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.52,
|
1027 |
+
"learning_rate": 1.065194470569193e-05,
|
1028 |
+
"loss": 0.0419,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.52,
|
1033 |
+
"learning_rate": 1.0551756706348331e-05,
|
1034 |
+
"loss": 0.04,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.52,
|
1039 |
+
"learning_rate": 1.0451513122333042e-05,
|
1040 |
+
"loss": 0.0227,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.52,
|
1045 |
+
"learning_rate": 1.035122405231209e-05,
|
1046 |
+
"loss": 0.0136,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.53,
|
1051 |
+
"learning_rate": 1.0250899599533833e-05,
|
1052 |
+
"loss": 0.0613,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.53,
|
1057 |
+
"learning_rate": 1.0150549870811108e-05,
|
1058 |
+
"loss": 0.02,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.53,
|
1063 |
+
"learning_rate": 1.0050184975503104e-05,
|
1064 |
+
"loss": 0.0232,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.54,
|
1069 |
+
"learning_rate": 9.949815024496901e-06,
|
1070 |
+
"loss": 0.0229,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.54,
|
1075 |
+
"learning_rate": 9.849450129188895e-06,
|
1076 |
+
"loss": 0.0483,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.54,
|
1081 |
+
"learning_rate": 9.74910040046617e-06,
|
1082 |
+
"loss": 0.0153,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.55,
|
1087 |
+
"learning_rate": 9.648775947687914e-06,
|
1088 |
+
"loss": 0.0121,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.55,
|
1093 |
+
"learning_rate": 9.548486877666963e-06,
|
1094 |
+
"loss": 0.0603,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.55,
|
1099 |
+
"learning_rate": 9.448243293651676e-06,
|
1100 |
+
"loss": 0.0291,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.55,
|
1105 |
+
"learning_rate": 9.348055294308074e-06,
|
1106 |
+
"loss": 0.0458,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.56,
|
1111 |
+
"learning_rate": 9.247932972702514e-06,
|
1112 |
+
"loss": 0.0438,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.56,
|
1117 |
+
"learning_rate": 9.147886415284903e-06,
|
1118 |
+
"loss": 0.0337,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.56,
|
1123 |
+
"learning_rate": 9.047925700872552e-06,
|
1124 |
+
"loss": 0.0527,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.57,
|
1129 |
+
"learning_rate": 8.948060899634846e-06,
|
1130 |
+
"loss": 0.0457,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.57,
|
1135 |
+
"learning_rate": 8.848302072078762e-06,
|
1136 |
+
"loss": 0.0354,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.57,
|
1141 |
+
"learning_rate": 8.748659268035339e-06,
|
1142 |
+
"loss": 0.0153,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.58,
|
1147 |
+
"learning_rate": 8.649142525647271e-06,
|
1148 |
+
"loss": 0.1229,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.58,
|
1153 |
+
"learning_rate": 8.549761870357633e-06,
|
1154 |
+
"loss": 0.0149,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.58,
|
1159 |
+
"learning_rate": 8.450527313899923e-06,
|
1160 |
+
"loss": 0.042,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.58,
|
1165 |
+
"learning_rate": 8.351448853289448e-06,
|
1166 |
+
"loss": 0.0146,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.59,
|
1171 |
+
"learning_rate": 8.25253646981622e-06,
|
1172 |
+
"loss": 0.0145,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.59,
|
1177 |
+
"learning_rate": 8.153800128039441e-06,
|
1178 |
+
"loss": 0.0691,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.59,
|
1183 |
+
"learning_rate": 8.05524977478364e-06,
|
1184 |
+
"loss": 0.0165,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.6,
|
1189 |
+
"learning_rate": 7.956895338136618e-06,
|
1190 |
+
"loss": 0.0776,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.6,
|
1195 |
+
"learning_rate": 7.858746726449309e-06,
|
1196 |
+
"loss": 0.046,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.6,
|
1201 |
+
"learning_rate": 7.760813827337555e-06,
|
1202 |
+
"loss": 0.0511,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.61,
|
1207 |
+
"learning_rate": 7.663106506686057e-06,
|
1208 |
+
"loss": 0.056,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.61,
|
1213 |
+
"learning_rate": 7.565634607654453e-06,
|
1214 |
+
"loss": 0.0084,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.61,
|
1219 |
+
"learning_rate": 7.468407949685695e-06,
|
1220 |
+
"loss": 0.0492,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.62,
|
1225 |
+
"learning_rate": 7.371436327516854e-06,
|
1226 |
+
"loss": 0.0472,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.62,
|
1231 |
+
"learning_rate": 7.274729510192367e-06,
|
1232 |
+
"loss": 0.0826,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.62,
|
1237 |
+
"learning_rate": 7.1782972400798825e-06,
|
1238 |
+
"loss": 0.062,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.62,
|
1243 |
+
"learning_rate": 7.082149231888833e-06,
|
1244 |
+
"loss": 0.0373,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.63,
|
1249 |
+
"learning_rate": 6.986295171691727e-06,
|
1250 |
+
"loss": 0.0227,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.63,
|
1255 |
+
"learning_rate": 6.890744715948388e-06,
|
1256 |
+
"loss": 0.029,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.63,
|
1261 |
+
"learning_rate": 6.795507490533142e-06,
|
1262 |
+
"loss": 0.0606,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.64,
|
1267 |
+
"learning_rate": 6.700593089765086e-06,
|
1268 |
+
"loss": 0.0784,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.64,
|
1273 |
+
"learning_rate": 6.606011075441556e-06,
|
1274 |
+
"loss": 0.0254,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.64,
|
1279 |
+
"learning_rate": 6.511770975874862e-06,
|
1280 |
+
"loss": 0.0669,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.65,
|
1285 |
+
"learning_rate": 6.417882284932373e-06,
|
1286 |
+
"loss": 0.0754,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.65,
|
1291 |
+
"learning_rate": 6.324354461080121e-06,
|
1292 |
+
"loss": 0.0171,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.65,
|
1297 |
+
"learning_rate": 6.231196926429913e-06,
|
1298 |
+
"loss": 0.054,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.65,
|
1303 |
+
"learning_rate": 6.138419065790169e-06,
|
1304 |
+
"loss": 0.0068,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.66,
|
1309 |
+
"learning_rate": 6.046030225720456e-06,
|
1310 |
+
"loss": 0.0406,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.66,
|
1315 |
+
"learning_rate": 5.95403971358991e-06,
|
1316 |
+
"loss": 0.0413,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.66,
|
1321 |
+
"learning_rate": 5.86245679663962e-06,
|
1322 |
+
"loss": 0.0359,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.67,
|
1327 |
+
"learning_rate": 5.7712907010490036e-06,
|
1328 |
+
"loss": 0.0398,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.67,
|
1333 |
+
"learning_rate": 5.680550611006372e-06,
|
1334 |
+
"loss": 0.0679,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.67,
|
1339 |
+
"learning_rate": 5.590245667783701e-06,
|
1340 |
+
"loss": 0.0356,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.68,
|
1345 |
+
"learning_rate": 5.5003849688157075e-06,
|
1346 |
+
"loss": 0.0169,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.68,
|
1351 |
+
"learning_rate": 5.4109775667833866e-06,
|
1352 |
+
"loss": 0.0432,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.68,
|
1357 |
+
"learning_rate": 5.322032468702037e-06,
|
1358 |
+
"loss": 0.012,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.68,
|
1363 |
+
"learning_rate": 5.233558635013842e-06,
|
1364 |
+
"loss": 0.0554,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.69,
|
1369 |
+
"learning_rate": 5.145564978685234e-06,
|
1370 |
+
"loss": 0.065,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.69,
|
1375 |
+
"learning_rate": 5.058060364308965e-06,
|
1376 |
+
"loss": 0.0139,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.69,
|
1381 |
+
"learning_rate": 4.971053607211069e-06,
|
1382 |
+
"loss": 0.0117,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.7,
|
1387 |
+
"learning_rate": 4.884553472562809e-06,
|
1388 |
+
"loss": 0.0763,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.7,
|
1393 |
+
"learning_rate": 4.7985686744976714e-06,
|
1394 |
+
"loss": 0.0341,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.7,
|
1399 |
+
"learning_rate": 4.713107875233459e-06,
|
1400 |
+
"loss": 0.0602,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.71,
|
1405 |
+
"learning_rate": 4.628179684199685e-06,
|
1406 |
+
"loss": 0.0102,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.71,
|
1411 |
+
"learning_rate": 4.543792657170228e-06,
|
1412 |
+
"loss": 0.0552,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.71,
|
1417 |
+
"learning_rate": 4.459955295401415e-06,
|
1418 |
+
"loss": 0.0356,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.72,
|
1423 |
+
"learning_rate": 4.376676044775601e-06,
|
1424 |
+
"loss": 0.0439,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.72,
|
1429 |
+
"learning_rate": 4.293963294950313e-06,
|
1430 |
+
"loss": 0.0109,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.72,
|
1435 |
+
"learning_rate": 4.211825378513066e-06,
|
1436 |
+
"loss": 0.0224,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.72,
|
1441 |
+
"learning_rate": 4.130270570141931e-06,
|
1442 |
+
"loss": 0.0378,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.73,
|
1447 |
+
"learning_rate": 4.0493070857719305e-06,
|
1448 |
+
"loss": 0.0714,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.73,
|
1453 |
+
"learning_rate": 3.968943081767358e-06,
|
1454 |
+
"loss": 0.0165,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.73,
|
1459 |
+
"learning_rate": 3.889186654100089e-06,
|
1460 |
+
"loss": 0.0637,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.74,
|
1465 |
+
"learning_rate": 3.81004583753399e-06,
|
1466 |
+
"loss": 0.0066,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.74,
|
1471 |
+
"learning_rate": 3.7315286048154862e-06,
|
1472 |
+
"loss": 0.0178,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.74,
|
1477 |
+
"learning_rate": 3.6536428658703594e-06,
|
1478 |
+
"loss": 0.0485,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.75,
|
1483 |
+
"learning_rate": 3.576396467006925e-06,
|
1484 |
+
"loss": 0.0283,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.75,
|
1489 |
+
"learning_rate": 3.4997971901255588e-06,
|
1490 |
+
"loss": 0.0694,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.75,
|
1495 |
+
"learning_rate": 3.4238527519347353e-06,
|
1496 |
+
"loss": 0.0552,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.75,
|
1501 |
+
"learning_rate": 3.3485708031736698e-06,
|
1502 |
+
"loss": 0.0436,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.76,
|
1507 |
+
"learning_rate": 3.2739589278415252e-06,
|
1508 |
+
"loss": 0.0881,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.76,
|
1513 |
+
"learning_rate": 3.2000246424334315e-06,
|
1514 |
+
"loss": 0.039,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.76,
|
1519 |
+
"learning_rate": 3.1267753951832523e-06,
|
1520 |
+
"loss": 0.0411,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.77,
|
1525 |
+
"learning_rate": 3.0542185653132216e-06,
|
1526 |
+
"loss": 0.0676,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.77,
|
1531 |
+
"learning_rate": 2.982361462290575e-06,
|
1532 |
+
"loss": 0.0206,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.77,
|
1537 |
+
"learning_rate": 2.9112113250911844e-06,
|
1538 |
+
"loss": 0.0827,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.78,
|
1543 |
+
"learning_rate": 2.8407753214702694e-06,
|
1544 |
+
"loss": 0.0102,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.78,
|
1549 |
+
"learning_rate": 2.7710605472403373e-06,
|
1550 |
+
"loss": 0.0229,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.78,
|
1555 |
+
"learning_rate": 2.702074025556327e-06,
|
1556 |
+
"loss": 0.0196,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.78,
|
1561 |
+
"learning_rate": 2.6338227062080924e-06,
|
1562 |
+
"loss": 0.0625,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.79,
|
1567 |
+
"learning_rate": 2.566313464920265e-06,
|
1568 |
+
"loss": 0.0595,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.79,
|
1573 |
+
"learning_rate": 2.4995531026595952e-06,
|
1574 |
+
"loss": 0.0147,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.79,
|
1579 |
+
"learning_rate": 2.4335483449498053e-06,
|
1580 |
+
"loss": 0.0544,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.8,
|
1585 |
+
"learning_rate": 2.3683058411940563e-06,
|
1586 |
+
"loss": 0.0453,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.8,
|
1591 |
+
"learning_rate": 2.3038321640050763e-06,
|
1592 |
+
"loss": 0.0609,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.8,
|
1597 |
+
"learning_rate": 2.2401338085430326e-06,
|
1598 |
+
"loss": 0.0504,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.81,
|
1603 |
+
"learning_rate": 2.177217191861183e-06,
|
1604 |
+
"loss": 0.0248,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.81,
|
1609 |
+
"learning_rate": 2.115088652259446e-06,
|
1610 |
+
"loss": 0.0616,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.81,
|
1615 |
+
"learning_rate": 2.053754448645846e-06,
|
1616 |
+
"loss": 0.0408,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.82,
|
1621 |
+
"learning_rate": 1.9932207599059782e-06,
|
1622 |
+
"loss": 0.0444,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.82,
|
1627 |
+
"learning_rate": 1.933493684280574e-06,
|
1628 |
+
"loss": 0.0632,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.82,
|
1633 |
+
"learning_rate": 1.8745792387511241e-06,
|
1634 |
+
"loss": 0.019,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.82,
|
1639 |
+
"learning_rate": 1.8164833584337216e-06,
|
1640 |
+
"loss": 0.0266,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.83,
|
1645 |
+
"learning_rate": 1.75921189598118e-06,
|
1646 |
+
"loss": 0.0499,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.83,
|
1651 |
+
"learning_rate": 1.7027706209933903e-06,
|
1652 |
+
"loss": 0.0379,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 0.83,
|
1657 |
+
"learning_rate": 1.6471652194361131e-06,
|
1658 |
+
"loss": 0.0092,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.84,
|
1663 |
+
"learning_rate": 1.5924012930681643e-06,
|
1664 |
+
"loss": 0.0326,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.84,
|
1669 |
+
"learning_rate": 1.5384843588770626e-06,
|
1670 |
+
"loss": 0.0179,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.84,
|
1675 |
+
"learning_rate": 1.4854198485232696e-06,
|
1676 |
+
"loss": 0.0641,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.85,
|
1681 |
+
"learning_rate": 1.433213107792991e-06,
|
1682 |
+
"loss": 0.0285,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.85,
|
1687 |
+
"learning_rate": 1.3818693960596186e-06,
|
1688 |
+
"loss": 0.0365,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.85,
|
1693 |
+
"learning_rate": 1.3313938857539133e-06,
|
1694 |
+
"loss": 0.0873,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 0.85,
|
1699 |
+
"learning_rate": 1.2817916618429194e-06,
|
1700 |
+
"loss": 0.0148,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.86,
|
1705 |
+
"learning_rate": 1.2330677213177034e-06,
|
1706 |
+
"loss": 0.0127,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.86,
|
1711 |
+
"learning_rate": 1.1852269726899423e-06,
|
1712 |
+
"loss": 0.0028,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.86,
|
1717 |
+
"learning_rate": 1.138274235497443e-06,
|
1718 |
+
"loss": 0.0241,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.87,
|
1723 |
+
"learning_rate": 1.0922142398186097e-06,
|
1724 |
+
"loss": 0.0466,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.87,
|
1729 |
+
"learning_rate": 1.0470516257959351e-06,
|
1730 |
+
"loss": 0.0273,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.87,
|
1735 |
+
"learning_rate": 1.00279094316854e-06,
|
1736 |
+
"loss": 0.0529,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 0.88,
|
1741 |
+
"learning_rate": 9.594366508138352e-07,
|
1742 |
+
"loss": 0.0648,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.88,
|
1747 |
+
"learning_rate": 9.169931162983137e-07,
|
1748 |
+
"loss": 0.0118,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.88,
|
1753 |
+
"learning_rate": 8.754646154375801e-07,
|
1754 |
+
"loss": 0.0321,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.88,
|
1759 |
+
"learning_rate": 8.348553318655795e-07,
|
1760 |
+
"loss": 0.0167,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.89,
|
1765 |
+
"learning_rate": 7.951693566131325e-07,
|
1766 |
+
"loss": 0.0204,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.89,
|
1771 |
+
"learning_rate": 7.564106876958188e-07,
|
1772 |
+
"loss": 0.0502,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.89,
|
1777 |
+
"learning_rate": 7.185832297111939e-07,
|
1778 |
+
"loss": 0.0075,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.9,
|
1783 |
+
"learning_rate": 6.816907934454353e-07,
|
1784 |
+
"loss": 0.053,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.9,
|
1789 |
+
"learning_rate": 6.457370954894582e-07,
|
1790 |
+
"loss": 0.0255,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.9,
|
1795 |
+
"learning_rate": 6.107257578644721e-07,
|
1796 |
+
"loss": 0.0422,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.91,
|
1801 |
+
"learning_rate": 5.766603076571164e-07,
|
1802 |
+
"loss": 0.0745,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.91,
|
1807 |
+
"learning_rate": 5.43544176664137e-07,
|
1808 |
+
"loss": 0.0217,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.91,
|
1813 |
+
"learning_rate": 5.113807010466432e-07,
|
1814 |
+
"loss": 0.0417,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.92,
|
1819 |
+
"learning_rate": 4.801731209940375e-07,
|
1820 |
+
"loss": 0.0324,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.92,
|
1825 |
+
"learning_rate": 4.499245803975927e-07,
|
1826 |
+
"loss": 0.0264,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.92,
|
1831 |
+
"learning_rate": 4.206381265337189e-07,
|
1832 |
+
"loss": 0.0285,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.92,
|
1837 |
+
"learning_rate": 3.9231670975699354e-07,
|
1838 |
+
"loss": 0.0603,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.93,
|
1843 |
+
"learning_rate": 3.649631832029288e-07,
|
1844 |
+
"loss": 0.0515,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.93,
|
1849 |
+
"learning_rate": 3.385803025005463e-07,
|
1850 |
+
"loss": 0.0133,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.93,
|
1855 |
+
"learning_rate": 3.1317072549477246e-07,
|
1856 |
+
"loss": 0.0106,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.94,
|
1861 |
+
"learning_rate": 2.887370119786792e-07,
|
1862 |
+
"loss": 0.0492,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.94,
|
1867 |
+
"learning_rate": 2.6528162343561593e-07,
|
1868 |
+
"loss": 0.0132,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.94,
|
1873 |
+
"learning_rate": 2.4280692279122554e-07,
|
1874 |
+
"loss": 0.0207,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.95,
|
1879 |
+
"learning_rate": 2.2131517417540937e-07,
|
1880 |
+
"loss": 0.0301,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.95,
|
1885 |
+
"learning_rate": 2.00808542694233e-07,
|
1886 |
+
"loss": 0.0294,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.95,
|
1891 |
+
"learning_rate": 1.8128909421180506e-07,
|
1892 |
+
"loss": 0.0349,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.95,
|
1897 |
+
"learning_rate": 1.6275879514217052e-07,
|
1898 |
+
"loss": 0.0405,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.96,
|
1903 |
+
"learning_rate": 1.4521951225120345e-07,
|
1904 |
+
"loss": 0.0464,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.96,
|
1909 |
+
"learning_rate": 1.2867301246854757e-07,
|
1910 |
+
"loss": 0.0258,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.96,
|
1915 |
+
"learning_rate": 1.1312096270961525e-07,
|
1916 |
+
"loss": 0.0217,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.97,
|
1921 |
+
"learning_rate": 9.856492970766296e-08,
|
1922 |
+
"loss": 0.0521,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.97,
|
1927 |
+
"learning_rate": 8.50063798559475e-08,
|
1928 |
+
"loss": 0.074,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.97,
|
1933 |
+
"learning_rate": 7.244667906001202e-08,
|
1934 |
+
"loss": 0.0091,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.98,
|
1939 |
+
"learning_rate": 6.088709260007153e-08,
|
1940 |
+
"loss": 0.0584,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.98,
|
1945 |
+
"learning_rate": 5.032878500355498e-08,
|
1946 |
+
"loss": 0.0114,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.98,
|
1951 |
+
"learning_rate": 4.07728199277857e-08,
|
1952 |
+
"loss": 0.0528,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.98,
|
1957 |
+
"learning_rate": 3.2220160052828245e-08,
|
1958 |
+
"loss": 0.0534,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.99,
|
1963 |
+
"learning_rate": 2.467166698450485e-08,
|
1964 |
+
"loss": 0.0912,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 0.99,
|
1969 |
+
"learning_rate": 1.812810116760044e-08,
|
1970 |
+
"loss": 0.0426,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.99,
|
1975 |
+
"learning_rate": 1.2590121809247235e-08,
|
1976 |
+
"loss": 0.0501,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.0,
|
1981 |
+
"learning_rate": 8.05828681252452e-09,
|
1982 |
+
"loss": 0.0135,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.0,
|
1987 |
+
"learning_rate": 4.5330527202480656e-09,
|
1988 |
+
"loss": 0.0375,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 1.0,
|
1993 |
+
"step": 330,
|
1994 |
+
"total_flos": 1006103224320.0,
|
1995 |
+
"train_loss": 0.05386477595011732,
|
1996 |
+
"train_runtime": 2481.834,
|
1997 |
+
"train_samples_per_second": 2.652,
|
1998 |
+
"train_steps_per_second": 0.133
|
1999 |
+
}
|
2000 |
+
],
|
2001 |
+
"logging_steps": 1.0,
|
2002 |
+
"max_steps": 330,
|
2003 |
+
"num_input_tokens_seen": 0,
|
2004 |
+
"num_train_epochs": 1,
|
2005 |
+
"save_steps": 500,
|
2006 |
+
"total_flos": 1006103224320.0,
|
2007 |
+
"train_batch_size": 10,
|
2008 |
+
"trial_name": null,
|
2009 |
+
"trial_params": null
|
2010 |
+
}
|
CheckGuard Models/wholeimage/bank/finetune_lora_llava_mistral.sh
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Use first parameter as GPU IDs, default to "0,1,2,3" if not provided
|
3 |
+
GPU_IDS=${1:-0,1,2,3}
|
4 |
+
|
5 |
+
|
6 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29601\
|
7 |
+
llava/train/train_mem.py \
|
8 |
+
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
|
9 |
+
--deepspeed ./scripts/zero3.json \
|
10 |
+
--model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
|
11 |
+
--version mistral_instruct \
|
12 |
+
--data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/bank/bank_dataset.json \
|
13 |
+
--image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
|
14 |
+
--vision_tower openai/clip-vit-large-patch14-336 \
|
15 |
+
--mm_projector_type mlp2x_gelu \
|
16 |
+
--mm_vision_select_layer -2 \
|
17 |
+
--mm_use_im_start_end False \
|
18 |
+
--mm_use_im_patch_token False \
|
19 |
+
--mm_patch_merge_type spatial_unpad \
|
20 |
+
--image_aspect_ratio anyres \
|
21 |
+
--group_by_modality_length False \
|
22 |
+
--bf16 False \
|
23 |
+
--fp16 True \
|
24 |
+
--output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model \
|
25 |
+
--num_train_epochs 1 \
|
26 |
+
--per_device_train_batch_size 10 \
|
27 |
+
--per_device_eval_batch_size 1 \
|
28 |
+
--gradient_accumulation_steps 1 \
|
29 |
+
--evaluation_strategy "no" \
|
30 |
+
--save_strategy "steps" \
|
31 |
+
--save_steps 500 \
|
32 |
+
--save_total_limit 5 \
|
33 |
+
--learning_rate 2e-5 \
|
34 |
+
--weight_decay 0. \
|
35 |
+
--warmup_ratio 0.05 \
|
36 |
+
--lr_scheduler_type "cosine" \
|
37 |
+
--logging_steps 1 \
|
38 |
+
--tf32 True \
|
39 |
+
--model_max_length 4096 \
|
40 |
+
--gradient_checkpointing True \
|
41 |
+
--dataloader_num_workers 4 \
|
42 |
+
--lazy_preprocess True \
|
43 |
+
--report_to wandb \
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: liuhaotian/llava-v1.6-mistral-7b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"v_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"up_proj",
|
27 |
+
"o_proj",
|
28 |
+
"k_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b234ad29295da4f261427006e770781d152d27e2bd090a65ac32cfb8472dd11b
|
3 |
+
size 708924928
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: liuhaotian/llava-v1.6-mistral-7b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"v_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"up_proj",
|
27 |
+
"o_proj",
|
28 |
+
"k_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c26e454370836d2d8ee1827620ba4d532f3b135ebd1e7fcbb0263a086f241253
|
3 |
+
size 1417762896
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3183212032ce3f53bf011c0ea2d72e73d90e4ae83d758f3cb2661945c405d2e
|
3 |
+
size 632242
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59f2e280a5a1fb1c30380e867fb4625232d56bf1130fb2ac1bda1c76272752dd
|
3 |
+
size 4504787266
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step500
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42d7cdbb5673ea29475539a9e027f8b9828b8bdf3f8f5a3383b13244fc3604a3
|
3 |
+
size 14244
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74f73b67322f406ba2e53b1ed170e4b3c50a5de49d1b4aa38bda0b32a3724ada
|
3 |
+
size 1064
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 4096,
|
37 |
+
"pad_token": "<unk>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,3021 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9009009009009009,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 7.142857142857143e-07,
|
14 |
+
"loss": 0.4237,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"learning_rate": 1.4285714285714286e-06,
|
20 |
+
"loss": 0.3368,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 2.1428571428571427e-06,
|
26 |
+
"loss": 0.214,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 2.8571428571428573e-06,
|
32 |
+
"loss": 0.396,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.01,
|
37 |
+
"learning_rate": 3.5714285714285718e-06,
|
38 |
+
"loss": 0.305,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.01,
|
43 |
+
"learning_rate": 4.2857142857142855e-06,
|
44 |
+
"loss": 0.4049,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.01,
|
49 |
+
"learning_rate": 5e-06,
|
50 |
+
"loss": 0.108,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"learning_rate": 5.7142857142857145e-06,
|
56 |
+
"loss": 0.2286,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.02,
|
61 |
+
"learning_rate": 6.4285714285714295e-06,
|
62 |
+
"loss": 0.1443,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.02,
|
67 |
+
"learning_rate": 7.1428571428571436e-06,
|
68 |
+
"loss": 0.2252,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.02,
|
73 |
+
"learning_rate": 7.857142857142858e-06,
|
74 |
+
"loss": 0.0747,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.02,
|
79 |
+
"learning_rate": 8.571428571428571e-06,
|
80 |
+
"loss": 0.1084,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.02,
|
85 |
+
"learning_rate": 9.285714285714288e-06,
|
86 |
+
"loss": 0.2115,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.03,
|
91 |
+
"learning_rate": 1e-05,
|
92 |
+
"loss": 0.4742,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.03,
|
97 |
+
"learning_rate": 1.0714285714285714e-05,
|
98 |
+
"loss": 0.083,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.03,
|
103 |
+
"learning_rate": 1.1428571428571429e-05,
|
104 |
+
"loss": 0.3392,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.03,
|
109 |
+
"learning_rate": 1.2142857142857142e-05,
|
110 |
+
"loss": 0.065,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.03,
|
115 |
+
"learning_rate": 1.2857142857142859e-05,
|
116 |
+
"loss": 0.1711,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.03,
|
121 |
+
"learning_rate": 1.3571428571428574e-05,
|
122 |
+
"loss": 0.0539,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.04,
|
127 |
+
"learning_rate": 1.4285714285714287e-05,
|
128 |
+
"loss": 0.0701,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.04,
|
133 |
+
"learning_rate": 1.5000000000000002e-05,
|
134 |
+
"loss": 0.0836,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.04,
|
139 |
+
"learning_rate": 1.5714285714285715e-05,
|
140 |
+
"loss": 0.1891,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.04,
|
145 |
+
"learning_rate": 1.642857142857143e-05,
|
146 |
+
"loss": 0.0422,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.04,
|
151 |
+
"learning_rate": 1.7142857142857142e-05,
|
152 |
+
"loss": 0.2094,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.05,
|
157 |
+
"learning_rate": 1.785714285714286e-05,
|
158 |
+
"loss": 0.139,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.05,
|
163 |
+
"learning_rate": 1.8571428571428575e-05,
|
164 |
+
"loss": 0.2214,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.05,
|
169 |
+
"learning_rate": 1.928571428571429e-05,
|
170 |
+
"loss": 0.1084,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.05,
|
175 |
+
"learning_rate": 2e-05,
|
176 |
+
"loss": 0.0898,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.05,
|
181 |
+
"learning_rate": 1.9999822316445652e-05,
|
182 |
+
"loss": 0.0359,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.05,
|
187 |
+
"learning_rate": 1.9999289272096886e-05,
|
188 |
+
"loss": 0.2648,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.06,
|
193 |
+
"learning_rate": 1.9998400885896355e-05,
|
194 |
+
"loss": 0.4007,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.06,
|
199 |
+
"learning_rate": 1.9997157189414373e-05,
|
200 |
+
"loss": 0.235,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.06,
|
205 |
+
"learning_rate": 1.999555822684783e-05,
|
206 |
+
"loss": 0.0273,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.06,
|
211 |
+
"learning_rate": 1.999360405501859e-05,
|
212 |
+
"loss": 0.0267,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.06,
|
217 |
+
"learning_rate": 1.99912947433715e-05,
|
218 |
+
"loss": 0.2619,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.06,
|
223 |
+
"learning_rate": 1.9988630373971896e-05,
|
224 |
+
"loss": 0.4101,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.07,
|
229 |
+
"learning_rate": 1.9985611041502704e-05,
|
230 |
+
"loss": 0.1302,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.07,
|
235 |
+
"learning_rate": 1.9982236853261067e-05,
|
236 |
+
"loss": 0.118,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.07,
|
241 |
+
"learning_rate": 1.9978507929154534e-05,
|
242 |
+
"loss": 0.0933,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.07,
|
247 |
+
"learning_rate": 1.997442440169681e-05,
|
248 |
+
"loss": 0.0104,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.07,
|
253 |
+
"learning_rate": 1.9969986416003026e-05,
|
254 |
+
"loss": 0.1061,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.08,
|
259 |
+
"learning_rate": 1.9965194129784597e-05,
|
260 |
+
"loss": 0.1575,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.08,
|
265 |
+
"learning_rate": 1.996004771334361e-05,
|
266 |
+
"loss": 0.1969,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.08,
|
271 |
+
"learning_rate": 1.996004771334361e-05,
|
272 |
+
"loss": 0.0492,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.08,
|
277 |
+
"learning_rate": 1.9954547349566783e-05,
|
278 |
+
"loss": 0.3012,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.08,
|
283 |
+
"learning_rate": 1.994869323391895e-05,
|
284 |
+
"loss": 0.2185,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.08,
|
289 |
+
"learning_rate": 1.994248557443613e-05,
|
290 |
+
"loss": 0.1729,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.09,
|
295 |
+
"learning_rate": 1.993592459171812e-05,
|
296 |
+
"loss": 0.0354,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.09,
|
301 |
+
"learning_rate": 1.9929010518920667e-05,
|
302 |
+
"loss": 0.3939,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.09,
|
307 |
+
"learning_rate": 1.992174360174717e-05,
|
308 |
+
"loss": 0.0505,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.09,
|
313 |
+
"learning_rate": 1.9914124098439976e-05,
|
314 |
+
"loss": 0.0777,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.09,
|
319 |
+
"learning_rate": 1.9914124098439976e-05,
|
320 |
+
"loss": 0.6651,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.1,
|
325 |
+
"learning_rate": 1.9906152279771162e-05,
|
326 |
+
"loss": 0.15,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.1,
|
331 |
+
"learning_rate": 1.9897828429032946e-05,
|
332 |
+
"loss": 0.1416,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.1,
|
337 |
+
"learning_rate": 1.9889152842027607e-05,
|
338 |
+
"loss": 0.1195,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1,
|
343 |
+
"learning_rate": 1.9880125827056967e-05,
|
344 |
+
"loss": 0.0787,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.1,
|
349 |
+
"learning_rate": 1.987074770491145e-05,
|
350 |
+
"loss": 0.0681,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.1,
|
355 |
+
"learning_rate": 1.986101880885867e-05,
|
356 |
+
"loss": 0.1337,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.11,
|
361 |
+
"learning_rate": 1.9850939484631598e-05,
|
362 |
+
"loss": 0.0961,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.11,
|
367 |
+
"learning_rate": 1.984051009041626e-05,
|
368 |
+
"loss": 0.116,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.11,
|
373 |
+
"learning_rate": 1.982973099683902e-05,
|
374 |
+
"loss": 0.3853,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.11,
|
379 |
+
"learning_rate": 1.9818602586953414e-05,
|
380 |
+
"loss": 0.0875,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.11,
|
385 |
+
"learning_rate": 1.9807125256226532e-05,
|
386 |
+
"loss": 0.3216,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.12,
|
391 |
+
"learning_rate": 1.9795299412524948e-05,
|
392 |
+
"loss": 0.0752,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.12,
|
397 |
+
"learning_rate": 1.9783125476100254e-05,
|
398 |
+
"loss": 0.1461,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.12,
|
403 |
+
"learning_rate": 1.9770603879574108e-05,
|
404 |
+
"loss": 0.075,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.12,
|
409 |
+
"learning_rate": 1.975773506792287e-05,
|
410 |
+
"loss": 0.0685,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.12,
|
415 |
+
"learning_rate": 1.974451949846177e-05,
|
416 |
+
"loss": 0.0555,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.12,
|
421 |
+
"learning_rate": 1.973095764082869e-05,
|
422 |
+
"loss": 0.0171,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.13,
|
427 |
+
"learning_rate": 1.9717049976967437e-05,
|
428 |
+
"loss": 0.0247,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.13,
|
433 |
+
"learning_rate": 1.9702797001110642e-05,
|
434 |
+
"loss": 0.0839,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.13,
|
439 |
+
"learning_rate": 1.9688199219762183e-05,
|
440 |
+
"loss": 0.4163,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.13,
|
445 |
+
"learning_rate": 1.96732571516792e-05,
|
446 |
+
"loss": 0.1461,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.13,
|
451 |
+
"learning_rate": 1.9657971327853644e-05,
|
452 |
+
"loss": 0.1457,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.14,
|
457 |
+
"learning_rate": 1.964234229149342e-05,
|
458 |
+
"loss": 0.0482,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.14,
|
463 |
+
"learning_rate": 1.962637059800307e-05,
|
464 |
+
"loss": 0.0802,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.14,
|
469 |
+
"learning_rate": 1.9610056814964053e-05,
|
470 |
+
"loss": 0.0697,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.14,
|
475 |
+
"learning_rate": 1.959340152211455e-05,
|
476 |
+
"loss": 0.0614,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.14,
|
481 |
+
"learning_rate": 1.95764053113289e-05,
|
482 |
+
"loss": 0.1004,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.14,
|
487 |
+
"learning_rate": 1.9559068786596526e-05,
|
488 |
+
"loss": 0.0286,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.15,
|
493 |
+
"learning_rate": 1.954139256400049e-05,
|
494 |
+
"loss": 0.1162,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.15,
|
499 |
+
"learning_rate": 1.952337727169561e-05,
|
500 |
+
"loss": 0.0731,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.15,
|
505 |
+
"learning_rate": 1.950502354988612e-05,
|
506 |
+
"loss": 0.0286,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.15,
|
511 |
+
"learning_rate": 1.948633205080292e-05,
|
512 |
+
"loss": 0.2425,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.15,
|
517 |
+
"learning_rate": 1.9467303438680414e-05,
|
518 |
+
"loss": 0.0505,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.15,
|
523 |
+
"learning_rate": 1.944793838973289e-05,
|
524 |
+
"loss": 0.0922,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.16,
|
529 |
+
"learning_rate": 1.9428237592130487e-05,
|
530 |
+
"loss": 0.2949,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.16,
|
535 |
+
"learning_rate": 1.940820174597476e-05,
|
536 |
+
"loss": 0.2807,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.16,
|
541 |
+
"learning_rate": 1.9387831563273775e-05,
|
542 |
+
"loss": 0.2377,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.16,
|
547 |
+
"learning_rate": 1.9367127767916828e-05,
|
548 |
+
"loss": 0.2558,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.16,
|
553 |
+
"learning_rate": 1.9346091095648712e-05,
|
554 |
+
"loss": 0.0871,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.17,
|
559 |
+
"learning_rate": 1.932472229404356e-05,
|
560 |
+
"loss": 0.2204,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.17,
|
565 |
+
"learning_rate": 1.9303022122478303e-05,
|
566 |
+
"loss": 0.1174,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.17,
|
571 |
+
"learning_rate": 1.9280991352105656e-05,
|
572 |
+
"loss": 0.2181,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.17,
|
577 |
+
"learning_rate": 1.925863076582674e-05,
|
578 |
+
"loss": 0.1251,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.17,
|
583 |
+
"learning_rate": 1.9235941158263253e-05,
|
584 |
+
"loss": 0.2251,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.17,
|
589 |
+
"learning_rate": 1.9212923335729206e-05,
|
590 |
+
"loss": 0.1236,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.18,
|
595 |
+
"learning_rate": 1.918957811620231e-05,
|
596 |
+
"loss": 0.0901,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.18,
|
601 |
+
"learning_rate": 1.9165906329294875e-05,
|
602 |
+
"loss": 0.1002,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.18,
|
607 |
+
"learning_rate": 1.9141908816224356e-05,
|
608 |
+
"loss": 0.4397,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.18,
|
613 |
+
"learning_rate": 1.9117586429783433e-05,
|
614 |
+
"loss": 0.1141,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.18,
|
619 |
+
"learning_rate": 1.909294003430972e-05,
|
620 |
+
"loss": 0.1842,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.19,
|
625 |
+
"learning_rate": 1.906797050565505e-05,
|
626 |
+
"loss": 0.0985,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.19,
|
631 |
+
"learning_rate": 1.9042678731154337e-05,
|
632 |
+
"loss": 0.1533,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.19,
|
637 |
+
"learning_rate": 1.901706560959407e-05,
|
638 |
+
"loss": 0.145,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.19,
|
643 |
+
"learning_rate": 1.8991132051180332e-05,
|
644 |
+
"loss": 0.1693,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.19,
|
649 |
+
"learning_rate": 1.8964878977506496e-05,
|
650 |
+
"loss": 0.2012,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.19,
|
655 |
+
"learning_rate": 1.8938307321520453e-05,
|
656 |
+
"loss": 0.1286,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.2,
|
661 |
+
"learning_rate": 1.8911418027491453e-05,
|
662 |
+
"loss": 0.1396,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.2,
|
667 |
+
"learning_rate": 1.8884212050976568e-05,
|
668 |
+
"loss": 0.0291,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.2,
|
673 |
+
"learning_rate": 1.885669035878672e-05,
|
674 |
+
"loss": 0.0317,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.2,
|
679 |
+
"learning_rate": 1.882885392895232e-05,
|
680 |
+
"loss": 0.1143,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.2,
|
685 |
+
"learning_rate": 1.8800703750688536e-05,
|
686 |
+
"loss": 0.126,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.21,
|
691 |
+
"learning_rate": 1.877224082436011e-05,
|
692 |
+
"loss": 0.2017,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.21,
|
697 |
+
"learning_rate": 1.8743466161445823e-05,
|
698 |
+
"loss": 0.0735,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.21,
|
703 |
+
"learning_rate": 1.8714380784502553e-05,
|
704 |
+
"loss": 0.0527,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.21,
|
709 |
+
"learning_rate": 1.8684985727128936e-05,
|
710 |
+
"loss": 0.1112,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.21,
|
715 |
+
"learning_rate": 1.8655282033928618e-05,
|
716 |
+
"loss": 0.3129,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.21,
|
721 |
+
"learning_rate": 1.8625270760473164e-05,
|
722 |
+
"loss": 0.2827,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.22,
|
727 |
+
"learning_rate": 1.8594952973264512e-05,
|
728 |
+
"loss": 0.5608,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.22,
|
733 |
+
"learning_rate": 1.856432974969711e-05,
|
734 |
+
"loss": 0.1465,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.22,
|
739 |
+
"learning_rate": 1.8533402178019596e-05,
|
740 |
+
"loss": 0.1322,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.22,
|
745 |
+
"learning_rate": 1.8502171357296144e-05,
|
746 |
+
"loss": 0.0912,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.22,
|
751 |
+
"learning_rate": 1.8470638397367397e-05,
|
752 |
+
"loss": 0.0419,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.23,
|
757 |
+
"learning_rate": 1.8438804418811038e-05,
|
758 |
+
"loss": 0.0369,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.23,
|
763 |
+
"learning_rate": 1.8406670552901958e-05,
|
764 |
+
"loss": 0.0529,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.23,
|
769 |
+
"learning_rate": 1.837423794157206e-05,
|
770 |
+
"loss": 0.1472,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.23,
|
775 |
+
"learning_rate": 1.834150773736967e-05,
|
776 |
+
"loss": 0.0425,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.23,
|
781 |
+
"learning_rate": 1.8308481103418597e-05,
|
782 |
+
"loss": 0.1634,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.23,
|
787 |
+
"learning_rate": 1.8275159213376783e-05,
|
788 |
+
"loss": 0.0485,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.24,
|
793 |
+
"learning_rate": 1.82415432513946e-05,
|
794 |
+
"loss": 0.0313,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.24,
|
799 |
+
"learning_rate": 1.8207634412072765e-05,
|
800 |
+
"loss": 0.1792,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.24,
|
805 |
+
"learning_rate": 1.81734339004199e-05,
|
806 |
+
"loss": 0.1184,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.24,
|
811 |
+
"learning_rate": 1.8138942931809702e-05,
|
812 |
+
"loss": 0.2756,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.24,
|
817 |
+
"learning_rate": 1.8104162731937746e-05,
|
818 |
+
"loss": 0.0635,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.25,
|
823 |
+
"learning_rate": 1.8069094536777938e-05,
|
824 |
+
"loss": 0.0158,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.25,
|
829 |
+
"learning_rate": 1.8033739592538598e-05,
|
830 |
+
"loss": 0.2732,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.25,
|
835 |
+
"learning_rate": 1.7998099155618147e-05,
|
836 |
+
"loss": 0.1428,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.25,
|
841 |
+
"learning_rate": 1.7962174492560492e-05,
|
842 |
+
"loss": 0.0777,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.25,
|
847 |
+
"learning_rate": 1.7925966880009998e-05,
|
848 |
+
"loss": 0.1644,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.25,
|
853 |
+
"learning_rate": 1.7889477604666124e-05,
|
854 |
+
"loss": 0.0999,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.26,
|
859 |
+
"learning_rate": 1.785270796323769e-05,
|
860 |
+
"loss": 0.0446,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.26,
|
865 |
+
"learning_rate": 1.7815659262396825e-05,
|
866 |
+
"loss": 0.0647,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.26,
|
871 |
+
"learning_rate": 1.7778332818732492e-05,
|
872 |
+
"loss": 0.0521,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.26,
|
877 |
+
"learning_rate": 1.7740729958703725e-05,
|
878 |
+
"loss": 0.2041,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.26,
|
883 |
+
"learning_rate": 1.7702852018592493e-05,
|
884 |
+
"loss": 0.0149,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.26,
|
889 |
+
"learning_rate": 1.7664700344456198e-05,
|
890 |
+
"loss": 0.0502,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.27,
|
895 |
+
"learning_rate": 1.762627629207986e-05,
|
896 |
+
"loss": 0.2027,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.27,
|
901 |
+
"learning_rate": 1.758758122692791e-05,
|
902 |
+
"loss": 0.0187,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.27,
|
907 |
+
"learning_rate": 1.7548616524095697e-05,
|
908 |
+
"loss": 0.1248,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.27,
|
913 |
+
"learning_rate": 1.7509383568260597e-05,
|
914 |
+
"loss": 0.0859,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.27,
|
919 |
+
"learning_rate": 1.7469883753632817e-05,
|
920 |
+
"loss": 0.0822,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.28,
|
925 |
+
"learning_rate": 1.743011848390585e-05,
|
926 |
+
"loss": 0.2445,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.28,
|
931 |
+
"learning_rate": 1.7390089172206594e-05,
|
932 |
+
"loss": 0.2662,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.28,
|
937 |
+
"learning_rate": 1.7349797241045115e-05,
|
938 |
+
"loss": 0.0984,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.28,
|
943 |
+
"learning_rate": 1.730924412226413e-05,
|
944 |
+
"loss": 0.0317,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.28,
|
949 |
+
"learning_rate": 1.726843125698809e-05,
|
950 |
+
"loss": 0.1129,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.28,
|
955 |
+
"learning_rate": 1.7227360095571992e-05,
|
956 |
+
"loss": 0.1882,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.29,
|
961 |
+
"learning_rate": 1.7186032097549822e-05,
|
962 |
+
"loss": 0.1099,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.29,
|
967 |
+
"learning_rate": 1.7144448731582698e-05,
|
968 |
+
"loss": 0.3506,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.29,
|
973 |
+
"learning_rate": 1.7102611475406676e-05,
|
974 |
+
"loss": 0.0936,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.29,
|
979 |
+
"learning_rate": 1.7060521815780225e-05,
|
980 |
+
"loss": 0.104,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.29,
|
985 |
+
"learning_rate": 1.7018181248431416e-05,
|
986 |
+
"loss": 0.168,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.3,
|
991 |
+
"learning_rate": 1.6975591278004747e-05,
|
992 |
+
"loss": 0.2726,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.3,
|
997 |
+
"learning_rate": 1.6932753418007683e-05,
|
998 |
+
"loss": 0.0564,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.3,
|
1003 |
+
"learning_rate": 1.688966919075687e-05,
|
1004 |
+
"loss": 0.2981,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.3,
|
1009 |
+
"learning_rate": 1.684634012732403e-05,
|
1010 |
+
"loss": 0.0602,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.3,
|
1015 |
+
"learning_rate": 1.680276776748157e-05,
|
1016 |
+
"loss": 0.0364,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.3,
|
1021 |
+
"learning_rate": 1.6758953659647838e-05,
|
1022 |
+
"loss": 0.096,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.31,
|
1027 |
+
"learning_rate": 1.6714899360832118e-05,
|
1028 |
+
"loss": 0.2139,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.31,
|
1033 |
+
"learning_rate": 1.667060643657929e-05,
|
1034 |
+
"loss": 0.1666,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.31,
|
1039 |
+
"learning_rate": 1.66260764609142e-05,
|
1040 |
+
"loss": 0.0486,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.31,
|
1045 |
+
"learning_rate": 1.658131101628571e-05,
|
1046 |
+
"loss": 0.055,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.31,
|
1051 |
+
"learning_rate": 1.653631169351049e-05,
|
1052 |
+
"loss": 0.0953,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.32,
|
1057 |
+
"learning_rate": 1.6491080091716457e-05,
|
1058 |
+
"loss": 0.1824,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.32,
|
1063 |
+
"learning_rate": 1.6445617818285974e-05,
|
1064 |
+
"loss": 0.0226,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.32,
|
1069 |
+
"learning_rate": 1.6399926488798702e-05,
|
1070 |
+
"loss": 0.0388,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.32,
|
1075 |
+
"learning_rate": 1.6354007726974205e-05,
|
1076 |
+
"loss": 0.1149,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.32,
|
1081 |
+
"learning_rate": 1.630786316461425e-05,
|
1082 |
+
"loss": 0.1428,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.32,
|
1087 |
+
"learning_rate": 1.6261494441544805e-05,
|
1088 |
+
"loss": 0.0445,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.33,
|
1093 |
+
"learning_rate": 1.6214903205557774e-05,
|
1094 |
+
"loss": 0.0612,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.33,
|
1099 |
+
"learning_rate": 1.6168091112352443e-05,
|
1100 |
+
"loss": 0.0826,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.33,
|
1105 |
+
"learning_rate": 1.612105982547663e-05,
|
1106 |
+
"loss": 0.0376,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.33,
|
1111 |
+
"learning_rate": 1.607381101626758e-05,
|
1112 |
+
"loss": 0.1441,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.33,
|
1117 |
+
"learning_rate": 1.6026346363792565e-05,
|
1118 |
+
"loss": 0.1089,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.34,
|
1123 |
+
"learning_rate": 1.5978667554789216e-05,
|
1124 |
+
"loss": 0.0845,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.34,
|
1129 |
+
"learning_rate": 1.5930776283605585e-05,
|
1130 |
+
"loss": 0.0835,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.34,
|
1135 |
+
"learning_rate": 1.5882674252139928e-05,
|
1136 |
+
"loss": 0.0762,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.34,
|
1141 |
+
"learning_rate": 1.5834363169780227e-05,
|
1142 |
+
"loss": 0.067,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.34,
|
1147 |
+
"learning_rate": 1.578584475334345e-05,
|
1148 |
+
"loss": 0.0327,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.34,
|
1153 |
+
"learning_rate": 1.5737120727014535e-05,
|
1154 |
+
"loss": 0.0254,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.35,
|
1159 |
+
"learning_rate": 1.5688192822285116e-05,
|
1160 |
+
"loss": 0.028,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.35,
|
1165 |
+
"learning_rate": 1.5639062777892e-05,
|
1166 |
+
"loss": 0.1708,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.35,
|
1171 |
+
"learning_rate": 1.5589732339755362e-05,
|
1172 |
+
"loss": 0.0542,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.35,
|
1177 |
+
"learning_rate": 1.5540203260916728e-05,
|
1178 |
+
"loss": 0.2358,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.35,
|
1183 |
+
"learning_rate": 1.5490477301476648e-05,
|
1184 |
+
"loss": 0.1471,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.35,
|
1189 |
+
"learning_rate": 1.5440556228532168e-05,
|
1190 |
+
"loss": 0.0414,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.36,
|
1195 |
+
"learning_rate": 1.5390441816114022e-05,
|
1196 |
+
"loss": 0.0754,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.36,
|
1201 |
+
"learning_rate": 1.534013584512359e-05,
|
1202 |
+
"loss": 0.105,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.36,
|
1207 |
+
"learning_rate": 1.5289640103269626e-05,
|
1208 |
+
"loss": 0.2052,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.36,
|
1213 |
+
"learning_rate": 1.5238956385004703e-05,
|
1214 |
+
"loss": 0.2482,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.36,
|
1219 |
+
"learning_rate": 1.5188086491461467e-05,
|
1220 |
+
"loss": 0.0967,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.37,
|
1225 |
+
"learning_rate": 1.5137032230388613e-05,
|
1226 |
+
"loss": 0.1314,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.37,
|
1231 |
+
"learning_rate": 1.5085795416086655e-05,
|
1232 |
+
"loss": 0.2313,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.37,
|
1237 |
+
"learning_rate": 1.5034377869343453e-05,
|
1238 |
+
"loss": 0.1304,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.37,
|
1243 |
+
"learning_rate": 1.4982781417369496e-05,
|
1244 |
+
"loss": 0.2304,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.37,
|
1249 |
+
"learning_rate": 1.4931007893732981e-05,
|
1250 |
+
"loss": 0.0508,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.37,
|
1255 |
+
"learning_rate": 1.4879059138294647e-05,
|
1256 |
+
"loss": 0.1389,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.38,
|
1261 |
+
"learning_rate": 1.4826936997142399e-05,
|
1262 |
+
"loss": 0.2129,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.38,
|
1267 |
+
"learning_rate": 1.4774643322525691e-05,
|
1268 |
+
"loss": 0.0201,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.38,
|
1273 |
+
"learning_rate": 1.4722179972789725e-05,
|
1274 |
+
"loss": 0.1064,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.38,
|
1279 |
+
"learning_rate": 1.466954881230939e-05,
|
1280 |
+
"loss": 0.0459,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.38,
|
1285 |
+
"learning_rate": 1.4616751711423016e-05,
|
1286 |
+
"loss": 0.2229,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.39,
|
1291 |
+
"learning_rate": 1.4563790546365914e-05,
|
1292 |
+
"loss": 0.1464,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.39,
|
1297 |
+
"learning_rate": 1.4510667199203697e-05,
|
1298 |
+
"loss": 0.0558,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.39,
|
1303 |
+
"learning_rate": 1.4457383557765385e-05,
|
1304 |
+
"loss": 0.0214,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.39,
|
1309 |
+
"learning_rate": 1.4403941515576344e-05,
|
1310 |
+
"loss": 0.1551,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.39,
|
1315 |
+
"learning_rate": 1.4350342971790979e-05,
|
1316 |
+
"loss": 0.2093,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.39,
|
1321 |
+
"learning_rate": 1.4296589831125234e-05,
|
1322 |
+
"loss": 0.0453,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.4,
|
1327 |
+
"learning_rate": 1.4242684003788934e-05,
|
1328 |
+
"loss": 0.0317,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.4,
|
1333 |
+
"learning_rate": 1.418862740541788e-05,
|
1334 |
+
"loss": 0.1334,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.4,
|
1339 |
+
"learning_rate": 1.4134421957005775e-05,
|
1340 |
+
"loss": 0.0185,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.4,
|
1345 |
+
"learning_rate": 1.4080069584835971e-05,
|
1346 |
+
"loss": 0.087,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.4,
|
1351 |
+
"learning_rate": 1.4025572220412998e-05,
|
1352 |
+
"loss": 0.1747,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.41,
|
1357 |
+
"learning_rate": 1.3970931800393943e-05,
|
1358 |
+
"loss": 0.1168,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.41,
|
1363 |
+
"learning_rate": 1.391615026651961e-05,
|
1364 |
+
"loss": 0.5095,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.41,
|
1369 |
+
"learning_rate": 1.3861229565545532e-05,
|
1370 |
+
"loss": 0.1157,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.41,
|
1375 |
+
"learning_rate": 1.3806171649172782e-05,
|
1376 |
+
"loss": 0.1201,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.41,
|
1381 |
+
"learning_rate": 1.3750978473978611e-05,
|
1382 |
+
"loss": 0.2232,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.41,
|
1387 |
+
"learning_rate": 1.3695652001346928e-05,
|
1388 |
+
"loss": 0.1718,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.42,
|
1393 |
+
"learning_rate": 1.36401941973986e-05,
|
1394 |
+
"loss": 0.0509,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.42,
|
1399 |
+
"learning_rate": 1.3584607032921566e-05,
|
1400 |
+
"loss": 0.0333,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.42,
|
1405 |
+
"learning_rate": 1.3528892483300821e-05,
|
1406 |
+
"loss": 0.1811,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.42,
|
1411 |
+
"learning_rate": 1.3473052528448203e-05,
|
1412 |
+
"loss": 0.1771,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.42,
|
1417 |
+
"learning_rate": 1.3417089152732049e-05,
|
1418 |
+
"loss": 0.1098,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.43,
|
1423 |
+
"learning_rate": 1.3361004344906652e-05,
|
1424 |
+
"loss": 0.0566,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.43,
|
1429 |
+
"learning_rate": 1.330480009804162e-05,
|
1430 |
+
"loss": 0.2864,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.43,
|
1435 |
+
"learning_rate": 1.3248478409451017e-05,
|
1436 |
+
"loss": 0.0166,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.43,
|
1441 |
+
"learning_rate": 1.3192041280622409e-05,
|
1442 |
+
"loss": 0.2239,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.43,
|
1447 |
+
"learning_rate": 1.3135490717145726e-05,
|
1448 |
+
"loss": 0.2247,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.43,
|
1453 |
+
"learning_rate": 1.3078828728641994e-05,
|
1454 |
+
"loss": 0.1758,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.44,
|
1459 |
+
"learning_rate": 1.3022057328691915e-05,
|
1460 |
+
"loss": 0.0618,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.44,
|
1465 |
+
"learning_rate": 1.2965178534764311e-05,
|
1466 |
+
"loss": 0.1204,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.44,
|
1471 |
+
"learning_rate": 1.2908194368144437e-05,
|
1472 |
+
"loss": 0.0233,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.44,
|
1477 |
+
"learning_rate": 1.285110685386215e-05,
|
1478 |
+
"loss": 0.0387,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.44,
|
1483 |
+
"learning_rate": 1.2793918020619937e-05,
|
1484 |
+
"loss": 0.0791,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.45,
|
1489 |
+
"learning_rate": 1.2736629900720832e-05,
|
1490 |
+
"loss": 0.0106,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.45,
|
1495 |
+
"learning_rate": 1.2679244529996182e-05,
|
1496 |
+
"loss": 0.042,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.45,
|
1501 |
+
"learning_rate": 1.262176394773332e-05,
|
1502 |
+
"loss": 0.0725,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.45,
|
1507 |
+
"learning_rate": 1.256419019660308e-05,
|
1508 |
+
"loss": 0.0834,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.45,
|
1513 |
+
"learning_rate": 1.2506525322587207e-05,
|
1514 |
+
"loss": 0.0432,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.45,
|
1519 |
+
"learning_rate": 1.2448771374905655e-05,
|
1520 |
+
"loss": 0.177,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.46,
|
1525 |
+
"learning_rate": 1.2390930405943766e-05,
|
1526 |
+
"loss": 0.0887,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.46,
|
1531 |
+
"learning_rate": 1.233300447117933e-05,
|
1532 |
+
"loss": 0.0152,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.46,
|
1537 |
+
"learning_rate": 1.2274995629109545e-05,
|
1538 |
+
"loss": 0.0317,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.46,
|
1543 |
+
"learning_rate": 1.2216905941177854e-05,
|
1544 |
+
"loss": 0.0268,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.46,
|
1549 |
+
"learning_rate": 1.215873747170071e-05,
|
1550 |
+
"loss": 0.1685,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.46,
|
1555 |
+
"learning_rate": 1.2100492287794186e-05,
|
1556 |
+
"loss": 0.1403,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.47,
|
1561 |
+
"learning_rate": 1.2042172459300546e-05,
|
1562 |
+
"loss": 0.0443,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.47,
|
1567 |
+
"learning_rate": 1.198378005871467e-05,
|
1568 |
+
"loss": 0.3589,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.47,
|
1573 |
+
"learning_rate": 1.192531716111042e-05,
|
1574 |
+
"loss": 0.0427,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.47,
|
1579 |
+
"learning_rate": 1.1866785844066884e-05,
|
1580 |
+
"loss": 0.1103,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.47,
|
1585 |
+
"learning_rate": 1.1808188187594549e-05,
|
1586 |
+
"loss": 0.2563,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.48,
|
1591 |
+
"learning_rate": 1.1749526274061394e-05,
|
1592 |
+
"loss": 0.1494,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.48,
|
1597 |
+
"learning_rate": 1.1690802188118878e-05,
|
1598 |
+
"loss": 0.1105,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.48,
|
1603 |
+
"learning_rate": 1.1632018016627859e-05,
|
1604 |
+
"loss": 0.082,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.48,
|
1609 |
+
"learning_rate": 1.1573175848584455e-05,
|
1610 |
+
"loss": 0.3555,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.48,
|
1615 |
+
"learning_rate": 1.1514277775045768e-05,
|
1616 |
+
"loss": 0.0603,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.48,
|
1621 |
+
"learning_rate": 1.1455325889055616e-05,
|
1622 |
+
"loss": 0.2883,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.49,
|
1627 |
+
"learning_rate": 1.1396322285570119e-05,
|
1628 |
+
"loss": 0.054,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.49,
|
1633 |
+
"learning_rate": 1.1337269061383278e-05,
|
1634 |
+
"loss": 0.0668,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.49,
|
1639 |
+
"learning_rate": 1.1278168315052445e-05,
|
1640 |
+
"loss": 0.1454,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.49,
|
1645 |
+
"learning_rate": 1.1219022146823762e-05,
|
1646 |
+
"loss": 0.0619,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.49,
|
1651 |
+
"learning_rate": 1.1159832658557498e-05,
|
1652 |
+
"loss": 0.0449,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 0.5,
|
1657 |
+
"learning_rate": 1.1100601953653393e-05,
|
1658 |
+
"loss": 0.0684,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.5,
|
1663 |
+
"learning_rate": 1.1041332136975874e-05,
|
1664 |
+
"loss": 0.0273,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.5,
|
1669 |
+
"learning_rate": 1.0982025314779287e-05,
|
1670 |
+
"loss": 0.2375,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.5,
|
1675 |
+
"learning_rate": 1.092268359463302e-05,
|
1676 |
+
"loss": 0.0353,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.5,
|
1681 |
+
"learning_rate": 1.086330908534663e-05,
|
1682 |
+
"loss": 0.1224,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.5,
|
1687 |
+
"learning_rate": 1.0803903896894877e-05,
|
1688 |
+
"loss": 0.1297,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.51,
|
1693 |
+
"learning_rate": 1.0744470140342775e-05,
|
1694 |
+
"loss": 0.4464,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 0.51,
|
1699 |
+
"learning_rate": 1.0685009927770542e-05,
|
1700 |
+
"loss": 0.103,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.51,
|
1705 |
+
"learning_rate": 1.0625525372198564e-05,
|
1706 |
+
"loss": 0.0881,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.51,
|
1711 |
+
"learning_rate": 1.056601858751229e-05,
|
1712 |
+
"loss": 0.075,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.51,
|
1717 |
+
"learning_rate": 1.0506491688387128e-05,
|
1718 |
+
"loss": 0.0677,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.52,
|
1723 |
+
"learning_rate": 1.0446946790213275e-05,
|
1724 |
+
"loss": 0.2301,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.52,
|
1729 |
+
"learning_rate": 1.0387386009020569e-05,
|
1730 |
+
"loss": 0.0737,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.52,
|
1735 |
+
"learning_rate": 1.032781146140326e-05,
|
1736 |
+
"loss": 0.1262,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 0.52,
|
1741 |
+
"learning_rate": 1.0268225264444829e-05,
|
1742 |
+
"loss": 0.0252,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.52,
|
1747 |
+
"learning_rate": 1.0208629535642726e-05,
|
1748 |
+
"loss": 0.0192,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.52,
|
1753 |
+
"learning_rate": 1.0149026392833137e-05,
|
1754 |
+
"loss": 0.257,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.53,
|
1759 |
+
"learning_rate": 1.0089417954115715e-05,
|
1760 |
+
"loss": 0.1876,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.53,
|
1765 |
+
"learning_rate": 1.002980633777831e-05,
|
1766 |
+
"loss": 0.0341,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.53,
|
1771 |
+
"learning_rate": 9.970193662221694e-06,
|
1772 |
+
"loss": 0.232,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.53,
|
1777 |
+
"learning_rate": 9.910582045884292e-06,
|
1778 |
+
"loss": 0.1429,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.53,
|
1783 |
+
"learning_rate": 9.850973607166865e-06,
|
1784 |
+
"loss": 0.2432,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.54,
|
1789 |
+
"learning_rate": 9.791370464357279e-06,
|
1790 |
+
"loss": 0.0288,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.54,
|
1795 |
+
"learning_rate": 9.731774735555174e-06,
|
1796 |
+
"loss": 0.2272,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.54,
|
1801 |
+
"learning_rate": 9.672188538596746e-06,
|
1802 |
+
"loss": 0.1102,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.54,
|
1807 |
+
"learning_rate": 9.612613990979436e-06,
|
1808 |
+
"loss": 0.0529,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.54,
|
1813 |
+
"learning_rate": 9.553053209786725e-06,
|
1814 |
+
"loss": 0.1721,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.54,
|
1819 |
+
"learning_rate": 9.493508311612874e-06,
|
1820 |
+
"loss": 0.0046,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.55,
|
1825 |
+
"learning_rate": 9.433981412487711e-06,
|
1826 |
+
"loss": 0.043,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.55,
|
1831 |
+
"learning_rate": 9.374474627801439e-06,
|
1832 |
+
"loss": 0.0589,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.55,
|
1837 |
+
"learning_rate": 9.314990072229461e-06,
|
1838 |
+
"loss": 0.0114,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.55,
|
1843 |
+
"learning_rate": 9.25552985965723e-06,
|
1844 |
+
"loss": 0.1645,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.55,
|
1849 |
+
"learning_rate": 9.196096103105127e-06,
|
1850 |
+
"loss": 0.2002,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.55,
|
1855 |
+
"learning_rate": 9.136690914653377e-06,
|
1856 |
+
"loss": 0.057,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.56,
|
1861 |
+
"learning_rate": 9.07731640536698e-06,
|
1862 |
+
"loss": 0.1744,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.56,
|
1867 |
+
"learning_rate": 9.017974685220716e-06,
|
1868 |
+
"loss": 0.0343,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.56,
|
1873 |
+
"learning_rate": 8.958667863024127e-06,
|
1874 |
+
"loss": 0.0405,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.56,
|
1879 |
+
"learning_rate": 8.899398046346608e-06,
|
1880 |
+
"loss": 0.2055,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.56,
|
1885 |
+
"learning_rate": 8.840167341442505e-06,
|
1886 |
+
"loss": 0.0673,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.57,
|
1891 |
+
"learning_rate": 8.78097785317624e-06,
|
1892 |
+
"loss": 0.0291,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.57,
|
1897 |
+
"learning_rate": 8.721831684947557e-06,
|
1898 |
+
"loss": 0.2443,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.57,
|
1903 |
+
"learning_rate": 8.662730938616724e-06,
|
1904 |
+
"loss": 0.058,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.57,
|
1909 |
+
"learning_rate": 8.603677714429888e-06,
|
1910 |
+
"loss": 0.2347,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.57,
|
1915 |
+
"learning_rate": 8.54467411094439e-06,
|
1916 |
+
"loss": 0.0307,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.57,
|
1921 |
+
"learning_rate": 8.485722224954237e-06,
|
1922 |
+
"loss": 0.0094,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.58,
|
1927 |
+
"learning_rate": 8.426824151415548e-06,
|
1928 |
+
"loss": 0.0724,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.58,
|
1933 |
+
"learning_rate": 8.367981983372143e-06,
|
1934 |
+
"loss": 0.0816,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.58,
|
1939 |
+
"learning_rate": 8.309197811881128e-06,
|
1940 |
+
"loss": 0.0375,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.58,
|
1945 |
+
"learning_rate": 8.250473725938608e-06,
|
1946 |
+
"loss": 0.0106,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.58,
|
1951 |
+
"learning_rate": 8.191811812405453e-06,
|
1952 |
+
"loss": 0.0701,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.59,
|
1957 |
+
"learning_rate": 8.133214155933118e-06,
|
1958 |
+
"loss": 0.0134,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.59,
|
1963 |
+
"learning_rate": 8.074682838889581e-06,
|
1964 |
+
"loss": 0.1992,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 0.59,
|
1969 |
+
"learning_rate": 8.01621994128533e-06,
|
1970 |
+
"loss": 0.1688,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.59,
|
1975 |
+
"learning_rate": 7.95782754069946e-06,
|
1976 |
+
"loss": 0.2751,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.59,
|
1981 |
+
"learning_rate": 7.899507712205818e-06,
|
1982 |
+
"loss": 0.0192,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.59,
|
1987 |
+
"learning_rate": 7.841262528299296e-06,
|
1988 |
+
"loss": 0.0797,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 0.6,
|
1993 |
+
"learning_rate": 7.783094058822147e-06,
|
1994 |
+
"loss": 0.0867,
|
1995 |
+
"step": 331
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.6,
|
1999 |
+
"learning_rate": 7.72500437089046e-06,
|
2000 |
+
"loss": 0.0445,
|
2001 |
+
"step": 332
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 0.6,
|
2005 |
+
"learning_rate": 7.666995528820673e-06,
|
2006 |
+
"loss": 0.1654,
|
2007 |
+
"step": 333
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 0.6,
|
2011 |
+
"learning_rate": 7.609069594056234e-06,
|
2012 |
+
"loss": 0.0168,
|
2013 |
+
"step": 334
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 0.6,
|
2017 |
+
"learning_rate": 7.551228625094349e-06,
|
2018 |
+
"loss": 0.0779,
|
2019 |
+
"step": 335
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.61,
|
2023 |
+
"learning_rate": 7.493474677412795e-06,
|
2024 |
+
"loss": 0.0444,
|
2025 |
+
"step": 336
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.61,
|
2029 |
+
"learning_rate": 7.435809803396923e-06,
|
2030 |
+
"loss": 0.1839,
|
2031 |
+
"step": 337
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 0.61,
|
2035 |
+
"learning_rate": 7.37823605226668e-06,
|
2036 |
+
"loss": 0.3834,
|
2037 |
+
"step": 338
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.61,
|
2041 |
+
"learning_rate": 7.320755470003822e-06,
|
2042 |
+
"loss": 0.0261,
|
2043 |
+
"step": 339
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 0.61,
|
2047 |
+
"learning_rate": 7.263370099279173e-06,
|
2048 |
+
"loss": 0.0084,
|
2049 |
+
"step": 340
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 0.61,
|
2053 |
+
"learning_rate": 7.2060819793800665e-06,
|
2054 |
+
"loss": 0.0469,
|
2055 |
+
"step": 341
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 0.62,
|
2059 |
+
"learning_rate": 7.148893146137852e-06,
|
2060 |
+
"loss": 0.3605,
|
2061 |
+
"step": 342
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.62,
|
2065 |
+
"learning_rate": 7.091805631855566e-06,
|
2066 |
+
"loss": 0.0621,
|
2067 |
+
"step": 343
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.62,
|
2071 |
+
"learning_rate": 7.034821465235693e-06,
|
2072 |
+
"loss": 0.099,
|
2073 |
+
"step": 344
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 0.62,
|
2077 |
+
"learning_rate": 6.977942671308087e-06,
|
2078 |
+
"loss": 0.0641,
|
2079 |
+
"step": 345
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.62,
|
2083 |
+
"learning_rate": 6.921171271358007e-06,
|
2084 |
+
"loss": 0.0859,
|
2085 |
+
"step": 346
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 0.63,
|
2089 |
+
"learning_rate": 6.864509282854272e-06,
|
2090 |
+
"loss": 0.0564,
|
2091 |
+
"step": 347
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 0.63,
|
2095 |
+
"learning_rate": 6.8079587193775935e-06,
|
2096 |
+
"loss": 0.0405,
|
2097 |
+
"step": 348
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 0.63,
|
2101 |
+
"learning_rate": 6.751521590548986e-06,
|
2102 |
+
"loss": 0.101,
|
2103 |
+
"step": 349
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.63,
|
2107 |
+
"learning_rate": 6.695199901958386e-06,
|
2108 |
+
"loss": 0.1178,
|
2109 |
+
"step": 350
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.63,
|
2113 |
+
"learning_rate": 6.638995655093351e-06,
|
2114 |
+
"loss": 0.2406,
|
2115 |
+
"step": 351
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 0.63,
|
2119 |
+
"learning_rate": 6.582910847267957e-06,
|
2120 |
+
"loss": 0.1846,
|
2121 |
+
"step": 352
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.64,
|
2125 |
+
"learning_rate": 6.526947471551799e-06,
|
2126 |
+
"loss": 0.1374,
|
2127 |
+
"step": 353
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 0.64,
|
2131 |
+
"learning_rate": 6.471107516699183e-06,
|
2132 |
+
"loss": 0.0863,
|
2133 |
+
"step": 354
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 0.64,
|
2137 |
+
"learning_rate": 6.415392967078438e-06,
|
2138 |
+
"loss": 0.0755,
|
2139 |
+
"step": 355
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 0.64,
|
2143 |
+
"learning_rate": 6.3598058026013995e-06,
|
2144 |
+
"loss": 0.0732,
|
2145 |
+
"step": 356
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.64,
|
2149 |
+
"learning_rate": 6.304347998653074e-06,
|
2150 |
+
"loss": 0.0555,
|
2151 |
+
"step": 357
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.65,
|
2155 |
+
"learning_rate": 6.24902152602139e-06,
|
2156 |
+
"loss": 0.0475,
|
2157 |
+
"step": 358
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.65,
|
2161 |
+
"learning_rate": 6.193828350827222e-06,
|
2162 |
+
"loss": 0.036,
|
2163 |
+
"step": 359
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.65,
|
2167 |
+
"learning_rate": 6.1387704344544684e-06,
|
2168 |
+
"loss": 0.2679,
|
2169 |
+
"step": 360
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 0.65,
|
2173 |
+
"learning_rate": 6.083849733480394e-06,
|
2174 |
+
"loss": 0.0661,
|
2175 |
+
"step": 361
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 0.65,
|
2179 |
+
"learning_rate": 6.0290681996060605e-06,
|
2180 |
+
"loss": 0.0362,
|
2181 |
+
"step": 362
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 0.65,
|
2185 |
+
"learning_rate": 5.974427779587004e-06,
|
2186 |
+
"loss": 0.0815,
|
2187 |
+
"step": 363
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.66,
|
2191 |
+
"learning_rate": 5.919930415164033e-06,
|
2192 |
+
"loss": 0.0205,
|
2193 |
+
"step": 364
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.66,
|
2197 |
+
"learning_rate": 5.865578042994227e-06,
|
2198 |
+
"loss": 0.0065,
|
2199 |
+
"step": 365
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 0.66,
|
2203 |
+
"learning_rate": 5.8113725945821245e-06,
|
2204 |
+
"loss": 0.2377,
|
2205 |
+
"step": 366
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 0.66,
|
2209 |
+
"learning_rate": 5.757315996211066e-06,
|
2210 |
+
"loss": 0.0673,
|
2211 |
+
"step": 367
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 0.66,
|
2215 |
+
"learning_rate": 5.703410168874768e-06,
|
2216 |
+
"loss": 0.1033,
|
2217 |
+
"step": 368
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 0.66,
|
2221 |
+
"learning_rate": 5.649657028209024e-06,
|
2222 |
+
"loss": 0.1259,
|
2223 |
+
"step": 369
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 0.67,
|
2227 |
+
"learning_rate": 5.5960584844236565e-06,
|
2228 |
+
"loss": 0.0052,
|
2229 |
+
"step": 370
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.67,
|
2233 |
+
"learning_rate": 5.542616442234618e-06,
|
2234 |
+
"loss": 0.1048,
|
2235 |
+
"step": 371
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.67,
|
2239 |
+
"learning_rate": 5.48933280079631e-06,
|
2240 |
+
"loss": 0.3342,
|
2241 |
+
"step": 372
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 0.67,
|
2245 |
+
"learning_rate": 5.436209453634087e-06,
|
2246 |
+
"loss": 0.0725,
|
2247 |
+
"step": 373
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 0.67,
|
2251 |
+
"learning_rate": 5.3832482885769855e-06,
|
2252 |
+
"loss": 0.1597,
|
2253 |
+
"step": 374
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 0.68,
|
2257 |
+
"learning_rate": 5.330451187690614e-06,
|
2258 |
+
"loss": 0.2186,
|
2259 |
+
"step": 375
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 0.68,
|
2263 |
+
"learning_rate": 5.277820027210279e-06,
|
2264 |
+
"loss": 0.0521,
|
2265 |
+
"step": 376
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 0.68,
|
2269 |
+
"learning_rate": 5.225356677474309e-06,
|
2270 |
+
"loss": 0.0426,
|
2271 |
+
"step": 377
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.68,
|
2275 |
+
"learning_rate": 5.1730630028576055e-06,
|
2276 |
+
"loss": 0.1171,
|
2277 |
+
"step": 378
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.68,
|
2281 |
+
"learning_rate": 5.120940861705357e-06,
|
2282 |
+
"loss": 0.0551,
|
2283 |
+
"step": 379
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 0.68,
|
2287 |
+
"learning_rate": 5.068992106267021e-06,
|
2288 |
+
"loss": 0.1238,
|
2289 |
+
"step": 380
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 0.69,
|
2293 |
+
"learning_rate": 5.017218582630507e-06,
|
2294 |
+
"loss": 0.4425,
|
2295 |
+
"step": 381
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 0.69,
|
2299 |
+
"learning_rate": 4.965622130656551e-06,
|
2300 |
+
"loss": 0.1591,
|
2301 |
+
"step": 382
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 0.69,
|
2305 |
+
"learning_rate": 4.914204583913349e-06,
|
2306 |
+
"loss": 0.0568,
|
2307 |
+
"step": 383
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 0.69,
|
2311 |
+
"learning_rate": 4.862967769611389e-06,
|
2312 |
+
"loss": 0.0159,
|
2313 |
+
"step": 384
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.69,
|
2317 |
+
"learning_rate": 4.8119135085385375e-06,
|
2318 |
+
"loss": 0.055,
|
2319 |
+
"step": 385
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.7,
|
2323 |
+
"learning_rate": 4.7610436149953e-06,
|
2324 |
+
"loss": 0.0356,
|
2325 |
+
"step": 386
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 0.7,
|
2329 |
+
"learning_rate": 4.710359896730379e-06,
|
2330 |
+
"loss": 0.0969,
|
2331 |
+
"step": 387
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 0.7,
|
2335 |
+
"learning_rate": 4.659864154876411e-06,
|
2336 |
+
"loss": 0.1161,
|
2337 |
+
"step": 388
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 0.7,
|
2341 |
+
"learning_rate": 4.609558183885979e-06,
|
2342 |
+
"loss": 0.0437,
|
2343 |
+
"step": 389
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 0.7,
|
2347 |
+
"learning_rate": 4.559443771467833e-06,
|
2348 |
+
"loss": 0.1526,
|
2349 |
+
"step": 390
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 0.7,
|
2353 |
+
"learning_rate": 4.509522698523352e-06,
|
2354 |
+
"loss": 0.0183,
|
2355 |
+
"step": 391
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.71,
|
2359 |
+
"learning_rate": 4.4597967390832745e-06,
|
2360 |
+
"loss": 0.073,
|
2361 |
+
"step": 392
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.71,
|
2365 |
+
"learning_rate": 4.4102676602446375e-06,
|
2366 |
+
"loss": 0.0411,
|
2367 |
+
"step": 393
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 0.71,
|
2371 |
+
"learning_rate": 4.360937222108002e-06,
|
2372 |
+
"loss": 0.0524,
|
2373 |
+
"step": 394
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 0.71,
|
2377 |
+
"learning_rate": 4.3118071777148865e-06,
|
2378 |
+
"loss": 0.1156,
|
2379 |
+
"step": 395
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 0.71,
|
2383 |
+
"learning_rate": 4.262879272985468e-06,
|
2384 |
+
"loss": 0.0311,
|
2385 |
+
"step": 396
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 0.72,
|
2389 |
+
"learning_rate": 4.21415524665655e-06,
|
2390 |
+
"loss": 0.1253,
|
2391 |
+
"step": 397
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 0.72,
|
2395 |
+
"learning_rate": 4.165636830219776e-06,
|
2396 |
+
"loss": 0.0589,
|
2397 |
+
"step": 398
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.72,
|
2401 |
+
"learning_rate": 4.117325747860077e-06,
|
2402 |
+
"loss": 0.0248,
|
2403 |
+
"step": 399
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.72,
|
2407 |
+
"learning_rate": 4.069223716394419e-06,
|
2408 |
+
"loss": 0.0164,
|
2409 |
+
"step": 400
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 0.72,
|
2413 |
+
"learning_rate": 4.021332445210785e-06,
|
2414 |
+
"loss": 0.1801,
|
2415 |
+
"step": 401
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 0.72,
|
2419 |
+
"learning_rate": 3.973653636207437e-06,
|
2420 |
+
"loss": 0.107,
|
2421 |
+
"step": 402
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 0.73,
|
2425 |
+
"learning_rate": 3.9261889837324245e-06,
|
2426 |
+
"loss": 0.0477,
|
2427 |
+
"step": 403
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 0.73,
|
2431 |
+
"learning_rate": 3.878940174523371e-06,
|
2432 |
+
"loss": 0.0214,
|
2433 |
+
"step": 404
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 0.73,
|
2437 |
+
"learning_rate": 3.8319088876475595e-06,
|
2438 |
+
"loss": 0.1071,
|
2439 |
+
"step": 405
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.73,
|
2443 |
+
"learning_rate": 3.785096794442229e-06,
|
2444 |
+
"loss": 0.071,
|
2445 |
+
"step": 406
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.73,
|
2449 |
+
"learning_rate": 3.7385055584552e-06,
|
2450 |
+
"loss": 0.0623,
|
2451 |
+
"step": 407
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 0.74,
|
2455 |
+
"learning_rate": 3.6921368353857524e-06,
|
2456 |
+
"loss": 0.0534,
|
2457 |
+
"step": 408
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 0.74,
|
2461 |
+
"learning_rate": 3.645992273025797e-06,
|
2462 |
+
"loss": 0.1143,
|
2463 |
+
"step": 409
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 0.74,
|
2467 |
+
"learning_rate": 3.6000735112012984e-06,
|
2468 |
+
"loss": 0.1056,
|
2469 |
+
"step": 410
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 0.74,
|
2473 |
+
"learning_rate": 3.5543821817140313e-06,
|
2474 |
+
"loss": 0.0537,
|
2475 |
+
"step": 411
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 0.74,
|
2479 |
+
"learning_rate": 3.5089199082835436e-06,
|
2480 |
+
"loss": 0.0065,
|
2481 |
+
"step": 412
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.74,
|
2485 |
+
"learning_rate": 3.463688306489511e-06,
|
2486 |
+
"loss": 0.0995,
|
2487 |
+
"step": 413
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.75,
|
2491 |
+
"learning_rate": 3.418688983714291e-06,
|
2492 |
+
"loss": 0.0818,
|
2493 |
+
"step": 414
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 0.75,
|
2497 |
+
"learning_rate": 3.373923539085805e-06,
|
2498 |
+
"loss": 0.0481,
|
2499 |
+
"step": 415
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 0.75,
|
2503 |
+
"learning_rate": 3.329393563420713e-06,
|
2504 |
+
"loss": 0.1379,
|
2505 |
+
"step": 416
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 0.75,
|
2509 |
+
"learning_rate": 3.285100639167883e-06,
|
2510 |
+
"loss": 0.1759,
|
2511 |
+
"step": 417
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 0.75,
|
2515 |
+
"learning_rate": 3.2410463403521653e-06,
|
2516 |
+
"loss": 0.0599,
|
2517 |
+
"step": 418
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 0.75,
|
2521 |
+
"learning_rate": 3.1972322325184347e-06,
|
2522 |
+
"loss": 0.0898,
|
2523 |
+
"step": 419
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.76,
|
2527 |
+
"learning_rate": 3.1536598726759747e-06,
|
2528 |
+
"loss": 0.0079,
|
2529 |
+
"step": 420
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.76,
|
2533 |
+
"learning_rate": 3.110330809243134e-06,
|
2534 |
+
"loss": 0.0185,
|
2535 |
+
"step": 421
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 0.76,
|
2539 |
+
"learning_rate": 3.0672465819923215e-06,
|
2540 |
+
"loss": 0.0792,
|
2541 |
+
"step": 422
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 0.76,
|
2545 |
+
"learning_rate": 3.0244087219952565e-06,
|
2546 |
+
"loss": 0.1059,
|
2547 |
+
"step": 423
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 0.76,
|
2551 |
+
"learning_rate": 2.981818751568586e-06,
|
2552 |
+
"loss": 0.044,
|
2553 |
+
"step": 424
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 0.77,
|
2557 |
+
"learning_rate": 2.939478184219777e-06,
|
2558 |
+
"loss": 0.0766,
|
2559 |
+
"step": 425
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 0.77,
|
2563 |
+
"learning_rate": 2.8973885245933287e-06,
|
2564 |
+
"loss": 0.1558,
|
2565 |
+
"step": 426
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.77,
|
2569 |
+
"learning_rate": 2.855551268417305e-06,
|
2570 |
+
"loss": 0.0052,
|
2571 |
+
"step": 427
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.77,
|
2575 |
+
"learning_rate": 2.813967902450179e-06,
|
2576 |
+
"loss": 0.0747,
|
2577 |
+
"step": 428
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 0.77,
|
2581 |
+
"learning_rate": 2.7726399044280107e-06,
|
2582 |
+
"loss": 0.0868,
|
2583 |
+
"step": 429
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 0.77,
|
2587 |
+
"learning_rate": 2.7315687430119097e-06,
|
2588 |
+
"loss": 0.047,
|
2589 |
+
"step": 430
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 0.78,
|
2593 |
+
"learning_rate": 2.6907558777358756e-06,
|
2594 |
+
"loss": 0.0721,
|
2595 |
+
"step": 431
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 0.78,
|
2599 |
+
"learning_rate": 2.650202758954886e-06,
|
2600 |
+
"loss": 0.128,
|
2601 |
+
"step": 432
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 0.78,
|
2605 |
+
"learning_rate": 2.6099108277934105e-06,
|
2606 |
+
"loss": 0.08,
|
2607 |
+
"step": 433
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.78,
|
2611 |
+
"learning_rate": 2.5698815160941494e-06,
|
2612 |
+
"loss": 0.0901,
|
2613 |
+
"step": 434
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.78,
|
2617 |
+
"learning_rate": 2.5301162463671845e-06,
|
2618 |
+
"loss": 0.0965,
|
2619 |
+
"step": 435
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 0.79,
|
2623 |
+
"learning_rate": 2.4906164317394067e-06,
|
2624 |
+
"loss": 0.062,
|
2625 |
+
"step": 436
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 0.79,
|
2629 |
+
"learning_rate": 2.451383475904304e-06,
|
2630 |
+
"loss": 0.0634,
|
2631 |
+
"step": 437
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 0.79,
|
2635 |
+
"learning_rate": 2.4124187730720916e-06,
|
2636 |
+
"loss": 0.1525,
|
2637 |
+
"step": 438
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 0.79,
|
2641 |
+
"learning_rate": 2.3737237079201437e-06,
|
2642 |
+
"loss": 0.1071,
|
2643 |
+
"step": 439
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 0.79,
|
2647 |
+
"learning_rate": 2.3352996555438036e-06,
|
2648 |
+
"loss": 0.0409,
|
2649 |
+
"step": 440
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.79,
|
2653 |
+
"learning_rate": 2.297147981407509e-06,
|
2654 |
+
"loss": 0.1753,
|
2655 |
+
"step": 441
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.8,
|
2659 |
+
"learning_rate": 2.2592700412962775e-06,
|
2660 |
+
"loss": 0.175,
|
2661 |
+
"step": 442
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 0.8,
|
2665 |
+
"learning_rate": 2.2216671812675118e-06,
|
2666 |
+
"loss": 0.0348,
|
2667 |
+
"step": 443
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 0.8,
|
2671 |
+
"learning_rate": 2.184340737603178e-06,
|
2672 |
+
"loss": 0.105,
|
2673 |
+
"step": 444
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 0.8,
|
2677 |
+
"learning_rate": 2.1472920367623094e-06,
|
2678 |
+
"loss": 0.0477,
|
2679 |
+
"step": 445
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 0.8,
|
2683 |
+
"learning_rate": 2.1105223953338805e-06,
|
2684 |
+
"loss": 0.0176,
|
2685 |
+
"step": 446
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 0.81,
|
2689 |
+
"learning_rate": 2.0740331199900053e-06,
|
2690 |
+
"loss": 0.6195,
|
2691 |
+
"step": 447
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.81,
|
2695 |
+
"learning_rate": 2.0378255074395094e-06,
|
2696 |
+
"loss": 0.0913,
|
2697 |
+
"step": 448
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.81,
|
2701 |
+
"learning_rate": 2.001900844381857e-06,
|
2702 |
+
"loss": 0.0386,
|
2703 |
+
"step": 449
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 0.81,
|
2707 |
+
"learning_rate": 1.9662604074614044e-06,
|
2708 |
+
"loss": 0.1309,
|
2709 |
+
"step": 450
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 0.81,
|
2713 |
+
"learning_rate": 1.9309054632220645e-06,
|
2714 |
+
"loss": 0.0218,
|
2715 |
+
"step": 451
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 0.81,
|
2719 |
+
"learning_rate": 1.895837268062256e-06,
|
2720 |
+
"loss": 0.0185,
|
2721 |
+
"step": 452
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 0.82,
|
2725 |
+
"learning_rate": 1.8610570681903018e-06,
|
2726 |
+
"loss": 0.3416,
|
2727 |
+
"step": 453
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 0.82,
|
2731 |
+
"learning_rate": 1.8265660995801004e-06,
|
2732 |
+
"loss": 0.2817,
|
2733 |
+
"step": 454
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.82,
|
2737 |
+
"learning_rate": 1.7923655879272395e-06,
|
2738 |
+
"loss": 0.0182,
|
2739 |
+
"step": 455
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.82,
|
2743 |
+
"learning_rate": 1.7584567486054039e-06,
|
2744 |
+
"loss": 0.0665,
|
2745 |
+
"step": 456
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 0.82,
|
2749 |
+
"learning_rate": 1.7248407866232175e-06,
|
2750 |
+
"loss": 0.0403,
|
2751 |
+
"step": 457
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 0.83,
|
2755 |
+
"learning_rate": 1.6915188965814034e-06,
|
2756 |
+
"loss": 0.017,
|
2757 |
+
"step": 458
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 0.83,
|
2761 |
+
"learning_rate": 1.6915188965814034e-06,
|
2762 |
+
"loss": 0.3175,
|
2763 |
+
"step": 459
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 0.83,
|
2767 |
+
"learning_rate": 1.6584922626303325e-06,
|
2768 |
+
"loss": 0.0474,
|
2769 |
+
"step": 460
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 0.83,
|
2773 |
+
"learning_rate": 1.6257620584279454e-06,
|
2774 |
+
"loss": 0.0881,
|
2775 |
+
"step": 461
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.83,
|
2779 |
+
"learning_rate": 1.5933294470980443e-06,
|
2780 |
+
"loss": 0.0475,
|
2781 |
+
"step": 462
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.83,
|
2785 |
+
"learning_rate": 1.5611955811889645e-06,
|
2786 |
+
"loss": 0.0473,
|
2787 |
+
"step": 463
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 0.84,
|
2791 |
+
"learning_rate": 1.5293616026326053e-06,
|
2792 |
+
"loss": 0.0143,
|
2793 |
+
"step": 464
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 0.84,
|
2797 |
+
"learning_rate": 1.4978286427038602e-06,
|
2798 |
+
"loss": 0.1228,
|
2799 |
+
"step": 465
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 0.84,
|
2803 |
+
"learning_rate": 1.4665978219804056e-06,
|
2804 |
+
"loss": 0.2635,
|
2805 |
+
"step": 466
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 0.84,
|
2809 |
+
"learning_rate": 1.435670250302892e-06,
|
2810 |
+
"loss": 0.0668,
|
2811 |
+
"step": 467
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 0.84,
|
2815 |
+
"learning_rate": 1.405047026735491e-06,
|
2816 |
+
"loss": 0.082,
|
2817 |
+
"step": 468
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.85,
|
2821 |
+
"learning_rate": 1.3747292395268407e-06,
|
2822 |
+
"loss": 0.085,
|
2823 |
+
"step": 469
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.85,
|
2827 |
+
"learning_rate": 1.344717966071385e-06,
|
2828 |
+
"loss": 0.1178,
|
2829 |
+
"step": 470
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 0.85,
|
2833 |
+
"learning_rate": 1.3150142728710669e-06,
|
2834 |
+
"loss": 0.0633,
|
2835 |
+
"step": 471
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 0.85,
|
2839 |
+
"learning_rate": 1.2856192154974488e-06,
|
2840 |
+
"loss": 0.0229,
|
2841 |
+
"step": 472
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 0.85,
|
2845 |
+
"learning_rate": 1.2565338385541792e-06,
|
2846 |
+
"loss": 0.0356,
|
2847 |
+
"step": 473
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 0.85,
|
2851 |
+
"learning_rate": 1.2277591756398933e-06,
|
2852 |
+
"loss": 0.1599,
|
2853 |
+
"step": 474
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 0.86,
|
2857 |
+
"learning_rate": 1.1992962493114645e-06,
|
2858 |
+
"loss": 0.0168,
|
2859 |
+
"step": 475
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.86,
|
2863 |
+
"learning_rate": 1.171146071047683e-06,
|
2864 |
+
"loss": 0.0626,
|
2865 |
+
"step": 476
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.86,
|
2869 |
+
"learning_rate": 1.1433096412132838e-06,
|
2870 |
+
"loss": 0.1343,
|
2871 |
+
"step": 477
|
2872 |
+
},
|
2873 |
+
{
|
2874 |
+
"epoch": 0.86,
|
2875 |
+
"learning_rate": 1.1157879490234346e-06,
|
2876 |
+
"loss": 0.0529,
|
2877 |
+
"step": 478
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 0.86,
|
2881 |
+
"learning_rate": 1.088581972508549e-06,
|
2882 |
+
"loss": 0.0556,
|
2883 |
+
"step": 479
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 0.86,
|
2887 |
+
"learning_rate": 1.0616926784795511e-06,
|
2888 |
+
"loss": 0.0903,
|
2889 |
+
"step": 480
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 0.87,
|
2893 |
+
"learning_rate": 1.035121022493506e-06,
|
2894 |
+
"loss": 0.0993,
|
2895 |
+
"step": 481
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 0.87,
|
2899 |
+
"learning_rate": 1.0088679488196695e-06,
|
2900 |
+
"loss": 0.0673,
|
2901 |
+
"step": 482
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.87,
|
2905 |
+
"learning_rate": 9.829343904059342e-07,
|
2906 |
+
"loss": 0.018,
|
2907 |
+
"step": 483
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.87,
|
2911 |
+
"learning_rate": 9.573212688456635e-07,
|
2912 |
+
"loss": 0.1005,
|
2913 |
+
"step": 484
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 0.87,
|
2917 |
+
"learning_rate": 9.320294943449537e-07,
|
2918 |
+
"loss": 0.0859,
|
2919 |
+
"step": 485
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 0.88,
|
2923 |
+
"learning_rate": 9.070599656902801e-07,
|
2924 |
+
"loss": 0.0361,
|
2925 |
+
"step": 486
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 0.88,
|
2929 |
+
"learning_rate": 8.824135702165693e-07,
|
2930 |
+
"loss": 0.0256,
|
2931 |
+
"step": 487
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 0.88,
|
2935 |
+
"learning_rate": 8.580911837756467e-07,
|
2936 |
+
"loss": 0.0652,
|
2937 |
+
"step": 488
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 0.88,
|
2941 |
+
"learning_rate": 8.340936707051273e-07,
|
2942 |
+
"loss": 0.103,
|
2943 |
+
"step": 489
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.88,
|
2947 |
+
"learning_rate": 8.10421883797694e-07,
|
2948 |
+
"loss": 0.0589,
|
2949 |
+
"step": 490
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.88,
|
2953 |
+
"learning_rate": 7.87076664270795e-07,
|
2954 |
+
"loss": 0.1919,
|
2955 |
+
"step": 491
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 0.89,
|
2959 |
+
"learning_rate": 7.6405884173675e-07,
|
2960 |
+
"loss": 0.1313,
|
2961 |
+
"step": 492
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 0.89,
|
2965 |
+
"learning_rate": 7.413692341732582e-07,
|
2966 |
+
"loss": 0.0657,
|
2967 |
+
"step": 493
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 0.89,
|
2971 |
+
"learning_rate": 7.190086478943459e-07,
|
2972 |
+
"loss": 0.1785,
|
2973 |
+
"step": 494
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 0.89,
|
2977 |
+
"learning_rate": 6.969778775217007e-07,
|
2978 |
+
"loss": 0.1866,
|
2979 |
+
"step": 495
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 0.89,
|
2983 |
+
"learning_rate": 6.752777059564431e-07,
|
2984 |
+
"loss": 0.0295,
|
2985 |
+
"step": 496
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.9,
|
2989 |
+
"learning_rate": 6.539089043512914e-07,
|
2990 |
+
"loss": 0.0316,
|
2991 |
+
"step": 497
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.9,
|
2995 |
+
"learning_rate": 6.328722320831737e-07,
|
2996 |
+
"loss": 0.0702,
|
2997 |
+
"step": 498
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 0.9,
|
3001 |
+
"learning_rate": 6.121684367262271e-07,
|
3002 |
+
"loss": 0.0271,
|
3003 |
+
"step": 499
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 0.9,
|
3007 |
+
"learning_rate": 5.917982540252442e-07,
|
3008 |
+
"loss": 0.0398,
|
3009 |
+
"step": 500
|
3010 |
+
}
|
3011 |
+
],
|
3012 |
+
"logging_steps": 1.0,
|
3013 |
+
"max_steps": 555,
|
3014 |
+
"num_input_tokens_seen": 0,
|
3015 |
+
"num_train_epochs": 1,
|
3016 |
+
"save_steps": 500,
|
3017 |
+
"total_flos": 1080325140480.0,
|
3018 |
+
"train_batch_size": 10,
|
3019 |
+
"trial_name": null,
|
3020 |
+
"trial_params": null
|
3021 |
+
}
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19850de0da1b4eac2d894ea196e517fb53755d5462a1803598ffe2ca47c1ad86
|
3 |
+
size 6968
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/config.json
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaMistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"freeze_mm_mlp_adapter": false,
|
10 |
+
"freeze_mm_vision_resampler": false,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"image_aspect_ratio": "anyres",
|
14 |
+
"image_crop_resolution": 224,
|
15 |
+
"image_grid_pinpoints": [
|
16 |
+
[
|
17 |
+
336,
|
18 |
+
672
|
19 |
+
],
|
20 |
+
[
|
21 |
+
672,
|
22 |
+
336
|
23 |
+
],
|
24 |
+
[
|
25 |
+
672,
|
26 |
+
672
|
27 |
+
],
|
28 |
+
[
|
29 |
+
1008,
|
30 |
+
336
|
31 |
+
],
|
32 |
+
[
|
33 |
+
336,
|
34 |
+
1008
|
35 |
+
]
|
36 |
+
],
|
37 |
+
"image_split_resolution": 224,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"intermediate_size": 14336,
|
40 |
+
"max_position_embeddings": 32768,
|
41 |
+
"mm_hidden_size": 1024,
|
42 |
+
"mm_patch_merge_type": "spatial_unpad",
|
43 |
+
"mm_projector_lr": 2e-05,
|
44 |
+
"mm_projector_type": "mlp2x_gelu",
|
45 |
+
"mm_resampler_type": null,
|
46 |
+
"mm_use_im_patch_token": false,
|
47 |
+
"mm_use_im_start_end": false,
|
48 |
+
"mm_vision_select_feature": "patch",
|
49 |
+
"mm_vision_select_layer": -2,
|
50 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
51 |
+
"mm_vision_tower_lr": 2e-06,
|
52 |
+
"model_type": "llava_mistral",
|
53 |
+
"num_attention_heads": 32,
|
54 |
+
"num_hidden_layers": 32,
|
55 |
+
"num_key_value_heads": 8,
|
56 |
+
"rms_norm_eps": 1e-05,
|
57 |
+
"rope_theta": 1000000.0,
|
58 |
+
"sliding_window": null,
|
59 |
+
"tie_word_embeddings": false,
|
60 |
+
"tokenizer_model_max_length": 4096,
|
61 |
+
"tokenizer_padding_side": "right",
|
62 |
+
"torch_dtype": "bfloat16",
|
63 |
+
"transformers_version": "4.37.2",
|
64 |
+
"tune_mm_mlp_adapter": false,
|
65 |
+
"tune_mm_vision_resampler": false,
|
66 |
+
"unfreeze_mm_vision_tower": true,
|
67 |
+
"use_cache": true,
|
68 |
+
"use_mm_proj": true,
|
69 |
+
"vocab_size": 32000
|
70 |
+
}
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fde24a5cdabb49bef91a9dd1ee36c3b2ed72791efc564f6476124852a334852
|
3 |
+
size 41961648
|
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/trainer_state.json
ADDED
@@ -0,0 +1,3360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 555,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 7.142857142857143e-07,
|
14 |
+
"loss": 0.4237,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"learning_rate": 1.4285714285714286e-06,
|
20 |
+
"loss": 0.3368,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 2.1428571428571427e-06,
|
26 |
+
"loss": 0.214,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 2.8571428571428573e-06,
|
32 |
+
"loss": 0.396,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.01,
|
37 |
+
"learning_rate": 3.5714285714285718e-06,
|
38 |
+
"loss": 0.305,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.01,
|
43 |
+
"learning_rate": 4.2857142857142855e-06,
|
44 |
+
"loss": 0.4049,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.01,
|
49 |
+
"learning_rate": 5e-06,
|
50 |
+
"loss": 0.108,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"learning_rate": 5.7142857142857145e-06,
|
56 |
+
"loss": 0.2286,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.02,
|
61 |
+
"learning_rate": 6.4285714285714295e-06,
|
62 |
+
"loss": 0.1443,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.02,
|
67 |
+
"learning_rate": 7.1428571428571436e-06,
|
68 |
+
"loss": 0.2252,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.02,
|
73 |
+
"learning_rate": 7.857142857142858e-06,
|
74 |
+
"loss": 0.0747,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.02,
|
79 |
+
"learning_rate": 8.571428571428571e-06,
|
80 |
+
"loss": 0.1084,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.02,
|
85 |
+
"learning_rate": 9.285714285714288e-06,
|
86 |
+
"loss": 0.2115,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.03,
|
91 |
+
"learning_rate": 1e-05,
|
92 |
+
"loss": 0.4742,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.03,
|
97 |
+
"learning_rate": 1.0714285714285714e-05,
|
98 |
+
"loss": 0.083,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.03,
|
103 |
+
"learning_rate": 1.1428571428571429e-05,
|
104 |
+
"loss": 0.3392,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.03,
|
109 |
+
"learning_rate": 1.2142857142857142e-05,
|
110 |
+
"loss": 0.065,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.03,
|
115 |
+
"learning_rate": 1.2857142857142859e-05,
|
116 |
+
"loss": 0.1711,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.03,
|
121 |
+
"learning_rate": 1.3571428571428574e-05,
|
122 |
+
"loss": 0.0539,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.04,
|
127 |
+
"learning_rate": 1.4285714285714287e-05,
|
128 |
+
"loss": 0.0701,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.04,
|
133 |
+
"learning_rate": 1.5000000000000002e-05,
|
134 |
+
"loss": 0.0836,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.04,
|
139 |
+
"learning_rate": 1.5714285714285715e-05,
|
140 |
+
"loss": 0.1891,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.04,
|
145 |
+
"learning_rate": 1.642857142857143e-05,
|
146 |
+
"loss": 0.0422,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.04,
|
151 |
+
"learning_rate": 1.7142857142857142e-05,
|
152 |
+
"loss": 0.2094,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.05,
|
157 |
+
"learning_rate": 1.785714285714286e-05,
|
158 |
+
"loss": 0.139,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.05,
|
163 |
+
"learning_rate": 1.8571428571428575e-05,
|
164 |
+
"loss": 0.2214,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.05,
|
169 |
+
"learning_rate": 1.928571428571429e-05,
|
170 |
+
"loss": 0.1084,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.05,
|
175 |
+
"learning_rate": 2e-05,
|
176 |
+
"loss": 0.0898,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.05,
|
181 |
+
"learning_rate": 1.9999822316445652e-05,
|
182 |
+
"loss": 0.0359,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.05,
|
187 |
+
"learning_rate": 1.9999289272096886e-05,
|
188 |
+
"loss": 0.2648,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.06,
|
193 |
+
"learning_rate": 1.9998400885896355e-05,
|
194 |
+
"loss": 0.4007,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.06,
|
199 |
+
"learning_rate": 1.9997157189414373e-05,
|
200 |
+
"loss": 0.235,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.06,
|
205 |
+
"learning_rate": 1.999555822684783e-05,
|
206 |
+
"loss": 0.0273,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.06,
|
211 |
+
"learning_rate": 1.999360405501859e-05,
|
212 |
+
"loss": 0.0267,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.06,
|
217 |
+
"learning_rate": 1.99912947433715e-05,
|
218 |
+
"loss": 0.2619,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.06,
|
223 |
+
"learning_rate": 1.9988630373971896e-05,
|
224 |
+
"loss": 0.4101,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.07,
|
229 |
+
"learning_rate": 1.9985611041502704e-05,
|
230 |
+
"loss": 0.1302,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.07,
|
235 |
+
"learning_rate": 1.9982236853261067e-05,
|
236 |
+
"loss": 0.118,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.07,
|
241 |
+
"learning_rate": 1.9978507929154534e-05,
|
242 |
+
"loss": 0.0933,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.07,
|
247 |
+
"learning_rate": 1.997442440169681e-05,
|
248 |
+
"loss": 0.0104,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.07,
|
253 |
+
"learning_rate": 1.9969986416003026e-05,
|
254 |
+
"loss": 0.1061,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.08,
|
259 |
+
"learning_rate": 1.9965194129784597e-05,
|
260 |
+
"loss": 0.1575,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.08,
|
265 |
+
"learning_rate": 1.996004771334361e-05,
|
266 |
+
"loss": 0.1969,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.08,
|
271 |
+
"learning_rate": 1.996004771334361e-05,
|
272 |
+
"loss": 0.0492,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.08,
|
277 |
+
"learning_rate": 1.9954547349566783e-05,
|
278 |
+
"loss": 0.3012,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.08,
|
283 |
+
"learning_rate": 1.994869323391895e-05,
|
284 |
+
"loss": 0.2185,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.08,
|
289 |
+
"learning_rate": 1.994248557443613e-05,
|
290 |
+
"loss": 0.1729,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.09,
|
295 |
+
"learning_rate": 1.993592459171812e-05,
|
296 |
+
"loss": 0.0354,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.09,
|
301 |
+
"learning_rate": 1.9929010518920667e-05,
|
302 |
+
"loss": 0.3939,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.09,
|
307 |
+
"learning_rate": 1.992174360174717e-05,
|
308 |
+
"loss": 0.0505,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.09,
|
313 |
+
"learning_rate": 1.9914124098439976e-05,
|
314 |
+
"loss": 0.0777,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.09,
|
319 |
+
"learning_rate": 1.9914124098439976e-05,
|
320 |
+
"loss": 0.6651,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.1,
|
325 |
+
"learning_rate": 1.9906152279771162e-05,
|
326 |
+
"loss": 0.15,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.1,
|
331 |
+
"learning_rate": 1.9897828429032946e-05,
|
332 |
+
"loss": 0.1416,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.1,
|
337 |
+
"learning_rate": 1.9889152842027607e-05,
|
338 |
+
"loss": 0.1195,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1,
|
343 |
+
"learning_rate": 1.9880125827056967e-05,
|
344 |
+
"loss": 0.0787,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.1,
|
349 |
+
"learning_rate": 1.987074770491145e-05,
|
350 |
+
"loss": 0.0681,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.1,
|
355 |
+
"learning_rate": 1.986101880885867e-05,
|
356 |
+
"loss": 0.1337,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.11,
|
361 |
+
"learning_rate": 1.9850939484631598e-05,
|
362 |
+
"loss": 0.0961,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.11,
|
367 |
+
"learning_rate": 1.984051009041626e-05,
|
368 |
+
"loss": 0.116,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.11,
|
373 |
+
"learning_rate": 1.982973099683902e-05,
|
374 |
+
"loss": 0.3853,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.11,
|
379 |
+
"learning_rate": 1.9818602586953414e-05,
|
380 |
+
"loss": 0.0875,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.11,
|
385 |
+
"learning_rate": 1.9807125256226532e-05,
|
386 |
+
"loss": 0.3216,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.12,
|
391 |
+
"learning_rate": 1.9795299412524948e-05,
|
392 |
+
"loss": 0.0752,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.12,
|
397 |
+
"learning_rate": 1.9783125476100254e-05,
|
398 |
+
"loss": 0.1461,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.12,
|
403 |
+
"learning_rate": 1.9770603879574108e-05,
|
404 |
+
"loss": 0.075,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.12,
|
409 |
+
"learning_rate": 1.975773506792287e-05,
|
410 |
+
"loss": 0.0685,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.12,
|
415 |
+
"learning_rate": 1.974451949846177e-05,
|
416 |
+
"loss": 0.0555,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.12,
|
421 |
+
"learning_rate": 1.973095764082869e-05,
|
422 |
+
"loss": 0.0171,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.13,
|
427 |
+
"learning_rate": 1.9717049976967437e-05,
|
428 |
+
"loss": 0.0247,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.13,
|
433 |
+
"learning_rate": 1.9702797001110642e-05,
|
434 |
+
"loss": 0.0839,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.13,
|
439 |
+
"learning_rate": 1.9688199219762183e-05,
|
440 |
+
"loss": 0.4163,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.13,
|
445 |
+
"learning_rate": 1.96732571516792e-05,
|
446 |
+
"loss": 0.1461,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.13,
|
451 |
+
"learning_rate": 1.9657971327853644e-05,
|
452 |
+
"loss": 0.1457,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.14,
|
457 |
+
"learning_rate": 1.964234229149342e-05,
|
458 |
+
"loss": 0.0482,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.14,
|
463 |
+
"learning_rate": 1.962637059800307e-05,
|
464 |
+
"loss": 0.0802,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.14,
|
469 |
+
"learning_rate": 1.9610056814964053e-05,
|
470 |
+
"loss": 0.0697,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.14,
|
475 |
+
"learning_rate": 1.959340152211455e-05,
|
476 |
+
"loss": 0.0614,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.14,
|
481 |
+
"learning_rate": 1.95764053113289e-05,
|
482 |
+
"loss": 0.1004,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.14,
|
487 |
+
"learning_rate": 1.9559068786596526e-05,
|
488 |
+
"loss": 0.0286,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.15,
|
493 |
+
"learning_rate": 1.954139256400049e-05,
|
494 |
+
"loss": 0.1162,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.15,
|
499 |
+
"learning_rate": 1.952337727169561e-05,
|
500 |
+
"loss": 0.0731,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.15,
|
505 |
+
"learning_rate": 1.950502354988612e-05,
|
506 |
+
"loss": 0.0286,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.15,
|
511 |
+
"learning_rate": 1.948633205080292e-05,
|
512 |
+
"loss": 0.2425,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.15,
|
517 |
+
"learning_rate": 1.9467303438680414e-05,
|
518 |
+
"loss": 0.0505,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.15,
|
523 |
+
"learning_rate": 1.944793838973289e-05,
|
524 |
+
"loss": 0.0922,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.16,
|
529 |
+
"learning_rate": 1.9428237592130487e-05,
|
530 |
+
"loss": 0.2949,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.16,
|
535 |
+
"learning_rate": 1.940820174597476e-05,
|
536 |
+
"loss": 0.2807,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.16,
|
541 |
+
"learning_rate": 1.9387831563273775e-05,
|
542 |
+
"loss": 0.2377,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.16,
|
547 |
+
"learning_rate": 1.9367127767916828e-05,
|
548 |
+
"loss": 0.2558,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.16,
|
553 |
+
"learning_rate": 1.9346091095648712e-05,
|
554 |
+
"loss": 0.0871,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.17,
|
559 |
+
"learning_rate": 1.932472229404356e-05,
|
560 |
+
"loss": 0.2204,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.17,
|
565 |
+
"learning_rate": 1.9303022122478303e-05,
|
566 |
+
"loss": 0.1174,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.17,
|
571 |
+
"learning_rate": 1.9280991352105656e-05,
|
572 |
+
"loss": 0.2181,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.17,
|
577 |
+
"learning_rate": 1.925863076582674e-05,
|
578 |
+
"loss": 0.1251,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.17,
|
583 |
+
"learning_rate": 1.9235941158263253e-05,
|
584 |
+
"loss": 0.2251,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.17,
|
589 |
+
"learning_rate": 1.9212923335729206e-05,
|
590 |
+
"loss": 0.1236,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.18,
|
595 |
+
"learning_rate": 1.918957811620231e-05,
|
596 |
+
"loss": 0.0901,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.18,
|
601 |
+
"learning_rate": 1.9165906329294875e-05,
|
602 |
+
"loss": 0.1002,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.18,
|
607 |
+
"learning_rate": 1.9141908816224356e-05,
|
608 |
+
"loss": 0.4397,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.18,
|
613 |
+
"learning_rate": 1.9117586429783433e-05,
|
614 |
+
"loss": 0.1141,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.18,
|
619 |
+
"learning_rate": 1.909294003430972e-05,
|
620 |
+
"loss": 0.1842,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.19,
|
625 |
+
"learning_rate": 1.906797050565505e-05,
|
626 |
+
"loss": 0.0985,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.19,
|
631 |
+
"learning_rate": 1.9042678731154337e-05,
|
632 |
+
"loss": 0.1533,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.19,
|
637 |
+
"learning_rate": 1.901706560959407e-05,
|
638 |
+
"loss": 0.145,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.19,
|
643 |
+
"learning_rate": 1.8991132051180332e-05,
|
644 |
+
"loss": 0.1693,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.19,
|
649 |
+
"learning_rate": 1.8964878977506496e-05,
|
650 |
+
"loss": 0.2012,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.19,
|
655 |
+
"learning_rate": 1.8938307321520453e-05,
|
656 |
+
"loss": 0.1286,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.2,
|
661 |
+
"learning_rate": 1.8911418027491453e-05,
|
662 |
+
"loss": 0.1396,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.2,
|
667 |
+
"learning_rate": 1.8884212050976568e-05,
|
668 |
+
"loss": 0.0291,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.2,
|
673 |
+
"learning_rate": 1.885669035878672e-05,
|
674 |
+
"loss": 0.0317,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.2,
|
679 |
+
"learning_rate": 1.882885392895232e-05,
|
680 |
+
"loss": 0.1143,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.2,
|
685 |
+
"learning_rate": 1.8800703750688536e-05,
|
686 |
+
"loss": 0.126,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.21,
|
691 |
+
"learning_rate": 1.877224082436011e-05,
|
692 |
+
"loss": 0.2017,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.21,
|
697 |
+
"learning_rate": 1.8743466161445823e-05,
|
698 |
+
"loss": 0.0735,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.21,
|
703 |
+
"learning_rate": 1.8714380784502553e-05,
|
704 |
+
"loss": 0.0527,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.21,
|
709 |
+
"learning_rate": 1.8684985727128936e-05,
|
710 |
+
"loss": 0.1112,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.21,
|
715 |
+
"learning_rate": 1.8655282033928618e-05,
|
716 |
+
"loss": 0.3129,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.21,
|
721 |
+
"learning_rate": 1.8625270760473164e-05,
|
722 |
+
"loss": 0.2827,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.22,
|
727 |
+
"learning_rate": 1.8594952973264512e-05,
|
728 |
+
"loss": 0.5608,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.22,
|
733 |
+
"learning_rate": 1.856432974969711e-05,
|
734 |
+
"loss": 0.1465,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.22,
|
739 |
+
"learning_rate": 1.8533402178019596e-05,
|
740 |
+
"loss": 0.1322,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.22,
|
745 |
+
"learning_rate": 1.8502171357296144e-05,
|
746 |
+
"loss": 0.0912,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.22,
|
751 |
+
"learning_rate": 1.8470638397367397e-05,
|
752 |
+
"loss": 0.0419,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.23,
|
757 |
+
"learning_rate": 1.8438804418811038e-05,
|
758 |
+
"loss": 0.0369,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.23,
|
763 |
+
"learning_rate": 1.8406670552901958e-05,
|
764 |
+
"loss": 0.0529,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.23,
|
769 |
+
"learning_rate": 1.837423794157206e-05,
|
770 |
+
"loss": 0.1472,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.23,
|
775 |
+
"learning_rate": 1.834150773736967e-05,
|
776 |
+
"loss": 0.0425,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.23,
|
781 |
+
"learning_rate": 1.8308481103418597e-05,
|
782 |
+
"loss": 0.1634,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.23,
|
787 |
+
"learning_rate": 1.8275159213376783e-05,
|
788 |
+
"loss": 0.0485,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.24,
|
793 |
+
"learning_rate": 1.82415432513946e-05,
|
794 |
+
"loss": 0.0313,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.24,
|
799 |
+
"learning_rate": 1.8207634412072765e-05,
|
800 |
+
"loss": 0.1792,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.24,
|
805 |
+
"learning_rate": 1.81734339004199e-05,
|
806 |
+
"loss": 0.1184,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.24,
|
811 |
+
"learning_rate": 1.8138942931809702e-05,
|
812 |
+
"loss": 0.2756,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.24,
|
817 |
+
"learning_rate": 1.8104162731937746e-05,
|
818 |
+
"loss": 0.0635,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.25,
|
823 |
+
"learning_rate": 1.8069094536777938e-05,
|
824 |
+
"loss": 0.0158,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.25,
|
829 |
+
"learning_rate": 1.8033739592538598e-05,
|
830 |
+
"loss": 0.2732,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.25,
|
835 |
+
"learning_rate": 1.7998099155618147e-05,
|
836 |
+
"loss": 0.1428,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.25,
|
841 |
+
"learning_rate": 1.7962174492560492e-05,
|
842 |
+
"loss": 0.0777,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.25,
|
847 |
+
"learning_rate": 1.7925966880009998e-05,
|
848 |
+
"loss": 0.1644,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.25,
|
853 |
+
"learning_rate": 1.7889477604666124e-05,
|
854 |
+
"loss": 0.0999,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.26,
|
859 |
+
"learning_rate": 1.785270796323769e-05,
|
860 |
+
"loss": 0.0446,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.26,
|
865 |
+
"learning_rate": 1.7815659262396825e-05,
|
866 |
+
"loss": 0.0647,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.26,
|
871 |
+
"learning_rate": 1.7778332818732492e-05,
|
872 |
+
"loss": 0.0521,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.26,
|
877 |
+
"learning_rate": 1.7740729958703725e-05,
|
878 |
+
"loss": 0.2041,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.26,
|
883 |
+
"learning_rate": 1.7702852018592493e-05,
|
884 |
+
"loss": 0.0149,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.26,
|
889 |
+
"learning_rate": 1.7664700344456198e-05,
|
890 |
+
"loss": 0.0502,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.27,
|
895 |
+
"learning_rate": 1.762627629207986e-05,
|
896 |
+
"loss": 0.2027,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.27,
|
901 |
+
"learning_rate": 1.758758122692791e-05,
|
902 |
+
"loss": 0.0187,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.27,
|
907 |
+
"learning_rate": 1.7548616524095697e-05,
|
908 |
+
"loss": 0.1248,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.27,
|
913 |
+
"learning_rate": 1.7509383568260597e-05,
|
914 |
+
"loss": 0.0859,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.27,
|
919 |
+
"learning_rate": 1.7469883753632817e-05,
|
920 |
+
"loss": 0.0822,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.28,
|
925 |
+
"learning_rate": 1.743011848390585e-05,
|
926 |
+
"loss": 0.2445,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.28,
|
931 |
+
"learning_rate": 1.7390089172206594e-05,
|
932 |
+
"loss": 0.2662,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.28,
|
937 |
+
"learning_rate": 1.7349797241045115e-05,
|
938 |
+
"loss": 0.0984,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.28,
|
943 |
+
"learning_rate": 1.730924412226413e-05,
|
944 |
+
"loss": 0.0317,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.28,
|
949 |
+
"learning_rate": 1.726843125698809e-05,
|
950 |
+
"loss": 0.1129,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.28,
|
955 |
+
"learning_rate": 1.7227360095571992e-05,
|
956 |
+
"loss": 0.1882,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.29,
|
961 |
+
"learning_rate": 1.7186032097549822e-05,
|
962 |
+
"loss": 0.1099,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.29,
|
967 |
+
"learning_rate": 1.7144448731582698e-05,
|
968 |
+
"loss": 0.3506,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.29,
|
973 |
+
"learning_rate": 1.7102611475406676e-05,
|
974 |
+
"loss": 0.0936,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.29,
|
979 |
+
"learning_rate": 1.7060521815780225e-05,
|
980 |
+
"loss": 0.104,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.29,
|
985 |
+
"learning_rate": 1.7018181248431416e-05,
|
986 |
+
"loss": 0.168,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.3,
|
991 |
+
"learning_rate": 1.6975591278004747e-05,
|
992 |
+
"loss": 0.2726,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.3,
|
997 |
+
"learning_rate": 1.6932753418007683e-05,
|
998 |
+
"loss": 0.0564,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.3,
|
1003 |
+
"learning_rate": 1.688966919075687e-05,
|
1004 |
+
"loss": 0.2981,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.3,
|
1009 |
+
"learning_rate": 1.684634012732403e-05,
|
1010 |
+
"loss": 0.0602,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.3,
|
1015 |
+
"learning_rate": 1.680276776748157e-05,
|
1016 |
+
"loss": 0.0364,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.3,
|
1021 |
+
"learning_rate": 1.6758953659647838e-05,
|
1022 |
+
"loss": 0.096,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.31,
|
1027 |
+
"learning_rate": 1.6714899360832118e-05,
|
1028 |
+
"loss": 0.2139,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.31,
|
1033 |
+
"learning_rate": 1.667060643657929e-05,
|
1034 |
+
"loss": 0.1666,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.31,
|
1039 |
+
"learning_rate": 1.66260764609142e-05,
|
1040 |
+
"loss": 0.0486,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.31,
|
1045 |
+
"learning_rate": 1.658131101628571e-05,
|
1046 |
+
"loss": 0.055,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.31,
|
1051 |
+
"learning_rate": 1.653631169351049e-05,
|
1052 |
+
"loss": 0.0953,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.32,
|
1057 |
+
"learning_rate": 1.6491080091716457e-05,
|
1058 |
+
"loss": 0.1824,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.32,
|
1063 |
+
"learning_rate": 1.6445617818285974e-05,
|
1064 |
+
"loss": 0.0226,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.32,
|
1069 |
+
"learning_rate": 1.6399926488798702e-05,
|
1070 |
+
"loss": 0.0388,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.32,
|
1075 |
+
"learning_rate": 1.6354007726974205e-05,
|
1076 |
+
"loss": 0.1149,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.32,
|
1081 |
+
"learning_rate": 1.630786316461425e-05,
|
1082 |
+
"loss": 0.1428,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.32,
|
1087 |
+
"learning_rate": 1.6261494441544805e-05,
|
1088 |
+
"loss": 0.0445,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.33,
|
1093 |
+
"learning_rate": 1.6214903205557774e-05,
|
1094 |
+
"loss": 0.0612,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.33,
|
1099 |
+
"learning_rate": 1.6168091112352443e-05,
|
1100 |
+
"loss": 0.0826,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.33,
|
1105 |
+
"learning_rate": 1.612105982547663e-05,
|
1106 |
+
"loss": 0.0376,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.33,
|
1111 |
+
"learning_rate": 1.607381101626758e-05,
|
1112 |
+
"loss": 0.1441,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.33,
|
1117 |
+
"learning_rate": 1.6026346363792565e-05,
|
1118 |
+
"loss": 0.1089,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.34,
|
1123 |
+
"learning_rate": 1.5978667554789216e-05,
|
1124 |
+
"loss": 0.0845,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.34,
|
1129 |
+
"learning_rate": 1.5930776283605585e-05,
|
1130 |
+
"loss": 0.0835,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.34,
|
1135 |
+
"learning_rate": 1.5882674252139928e-05,
|
1136 |
+
"loss": 0.0762,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.34,
|
1141 |
+
"learning_rate": 1.5834363169780227e-05,
|
1142 |
+
"loss": 0.067,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.34,
|
1147 |
+
"learning_rate": 1.578584475334345e-05,
|
1148 |
+
"loss": 0.0327,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.34,
|
1153 |
+
"learning_rate": 1.5737120727014535e-05,
|
1154 |
+
"loss": 0.0254,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.35,
|
1159 |
+
"learning_rate": 1.5688192822285116e-05,
|
1160 |
+
"loss": 0.028,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.35,
|
1165 |
+
"learning_rate": 1.5639062777892e-05,
|
1166 |
+
"loss": 0.1708,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.35,
|
1171 |
+
"learning_rate": 1.5589732339755362e-05,
|
1172 |
+
"loss": 0.0542,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.35,
|
1177 |
+
"learning_rate": 1.5540203260916728e-05,
|
1178 |
+
"loss": 0.2358,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.35,
|
1183 |
+
"learning_rate": 1.5490477301476648e-05,
|
1184 |
+
"loss": 0.1471,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.35,
|
1189 |
+
"learning_rate": 1.5440556228532168e-05,
|
1190 |
+
"loss": 0.0414,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.36,
|
1195 |
+
"learning_rate": 1.5390441816114022e-05,
|
1196 |
+
"loss": 0.0754,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.36,
|
1201 |
+
"learning_rate": 1.534013584512359e-05,
|
1202 |
+
"loss": 0.105,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.36,
|
1207 |
+
"learning_rate": 1.5289640103269626e-05,
|
1208 |
+
"loss": 0.2052,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.36,
|
1213 |
+
"learning_rate": 1.5238956385004703e-05,
|
1214 |
+
"loss": 0.2482,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.36,
|
1219 |
+
"learning_rate": 1.5188086491461467e-05,
|
1220 |
+
"loss": 0.0967,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.37,
|
1225 |
+
"learning_rate": 1.5137032230388613e-05,
|
1226 |
+
"loss": 0.1314,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.37,
|
1231 |
+
"learning_rate": 1.5085795416086655e-05,
|
1232 |
+
"loss": 0.2313,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.37,
|
1237 |
+
"learning_rate": 1.5034377869343453e-05,
|
1238 |
+
"loss": 0.1304,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.37,
|
1243 |
+
"learning_rate": 1.4982781417369496e-05,
|
1244 |
+
"loss": 0.2304,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.37,
|
1249 |
+
"learning_rate": 1.4931007893732981e-05,
|
1250 |
+
"loss": 0.0508,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.37,
|
1255 |
+
"learning_rate": 1.4879059138294647e-05,
|
1256 |
+
"loss": 0.1389,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.38,
|
1261 |
+
"learning_rate": 1.4826936997142399e-05,
|
1262 |
+
"loss": 0.2129,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.38,
|
1267 |
+
"learning_rate": 1.4774643322525691e-05,
|
1268 |
+
"loss": 0.0201,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.38,
|
1273 |
+
"learning_rate": 1.4722179972789725e-05,
|
1274 |
+
"loss": 0.1064,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.38,
|
1279 |
+
"learning_rate": 1.466954881230939e-05,
|
1280 |
+
"loss": 0.0459,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.38,
|
1285 |
+
"learning_rate": 1.4616751711423016e-05,
|
1286 |
+
"loss": 0.2229,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.39,
|
1291 |
+
"learning_rate": 1.4563790546365914e-05,
|
1292 |
+
"loss": 0.1464,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.39,
|
1297 |
+
"learning_rate": 1.4510667199203697e-05,
|
1298 |
+
"loss": 0.0558,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.39,
|
1303 |
+
"learning_rate": 1.4457383557765385e-05,
|
1304 |
+
"loss": 0.0214,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.39,
|
1309 |
+
"learning_rate": 1.4403941515576344e-05,
|
1310 |
+
"loss": 0.1551,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.39,
|
1315 |
+
"learning_rate": 1.4350342971790979e-05,
|
1316 |
+
"loss": 0.2093,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.39,
|
1321 |
+
"learning_rate": 1.4296589831125234e-05,
|
1322 |
+
"loss": 0.0453,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.4,
|
1327 |
+
"learning_rate": 1.4242684003788934e-05,
|
1328 |
+
"loss": 0.0317,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.4,
|
1333 |
+
"learning_rate": 1.418862740541788e-05,
|
1334 |
+
"loss": 0.1334,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.4,
|
1339 |
+
"learning_rate": 1.4134421957005775e-05,
|
1340 |
+
"loss": 0.0185,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.4,
|
1345 |
+
"learning_rate": 1.4080069584835971e-05,
|
1346 |
+
"loss": 0.087,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.4,
|
1351 |
+
"learning_rate": 1.4025572220412998e-05,
|
1352 |
+
"loss": 0.1747,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.41,
|
1357 |
+
"learning_rate": 1.3970931800393943e-05,
|
1358 |
+
"loss": 0.1168,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.41,
|
1363 |
+
"learning_rate": 1.391615026651961e-05,
|
1364 |
+
"loss": 0.5095,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.41,
|
1369 |
+
"learning_rate": 1.3861229565545532e-05,
|
1370 |
+
"loss": 0.1157,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.41,
|
1375 |
+
"learning_rate": 1.3806171649172782e-05,
|
1376 |
+
"loss": 0.1201,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.41,
|
1381 |
+
"learning_rate": 1.3750978473978611e-05,
|
1382 |
+
"loss": 0.2232,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.41,
|
1387 |
+
"learning_rate": 1.3695652001346928e-05,
|
1388 |
+
"loss": 0.1718,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.42,
|
1393 |
+
"learning_rate": 1.36401941973986e-05,
|
1394 |
+
"loss": 0.0509,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.42,
|
1399 |
+
"learning_rate": 1.3584607032921566e-05,
|
1400 |
+
"loss": 0.0333,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.42,
|
1405 |
+
"learning_rate": 1.3528892483300821e-05,
|
1406 |
+
"loss": 0.1811,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.42,
|
1411 |
+
"learning_rate": 1.3473052528448203e-05,
|
1412 |
+
"loss": 0.1771,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.42,
|
1417 |
+
"learning_rate": 1.3417089152732049e-05,
|
1418 |
+
"loss": 0.1098,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.43,
|
1423 |
+
"learning_rate": 1.3361004344906652e-05,
|
1424 |
+
"loss": 0.0566,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.43,
|
1429 |
+
"learning_rate": 1.330480009804162e-05,
|
1430 |
+
"loss": 0.2864,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.43,
|
1435 |
+
"learning_rate": 1.3248478409451017e-05,
|
1436 |
+
"loss": 0.0166,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.43,
|
1441 |
+
"learning_rate": 1.3192041280622409e-05,
|
1442 |
+
"loss": 0.2239,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.43,
|
1447 |
+
"learning_rate": 1.3135490717145726e-05,
|
1448 |
+
"loss": 0.2247,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.43,
|
1453 |
+
"learning_rate": 1.3078828728641994e-05,
|
1454 |
+
"loss": 0.1758,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.44,
|
1459 |
+
"learning_rate": 1.3022057328691915e-05,
|
1460 |
+
"loss": 0.0618,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.44,
|
1465 |
+
"learning_rate": 1.2965178534764311e-05,
|
1466 |
+
"loss": 0.1204,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.44,
|
1471 |
+
"learning_rate": 1.2908194368144437e-05,
|
1472 |
+
"loss": 0.0233,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.44,
|
1477 |
+
"learning_rate": 1.285110685386215e-05,
|
1478 |
+
"loss": 0.0387,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.44,
|
1483 |
+
"learning_rate": 1.2793918020619937e-05,
|
1484 |
+
"loss": 0.0791,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.45,
|
1489 |
+
"learning_rate": 1.2736629900720832e-05,
|
1490 |
+
"loss": 0.0106,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.45,
|
1495 |
+
"learning_rate": 1.2679244529996182e-05,
|
1496 |
+
"loss": 0.042,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.45,
|
1501 |
+
"learning_rate": 1.262176394773332e-05,
|
1502 |
+
"loss": 0.0725,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.45,
|
1507 |
+
"learning_rate": 1.256419019660308e-05,
|
1508 |
+
"loss": 0.0834,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.45,
|
1513 |
+
"learning_rate": 1.2506525322587207e-05,
|
1514 |
+
"loss": 0.0432,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.45,
|
1519 |
+
"learning_rate": 1.2448771374905655e-05,
|
1520 |
+
"loss": 0.177,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.46,
|
1525 |
+
"learning_rate": 1.2390930405943766e-05,
|
1526 |
+
"loss": 0.0887,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.46,
|
1531 |
+
"learning_rate": 1.233300447117933e-05,
|
1532 |
+
"loss": 0.0152,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.46,
|
1537 |
+
"learning_rate": 1.2274995629109545e-05,
|
1538 |
+
"loss": 0.0317,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.46,
|
1543 |
+
"learning_rate": 1.2216905941177854e-05,
|
1544 |
+
"loss": 0.0268,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.46,
|
1549 |
+
"learning_rate": 1.215873747170071e-05,
|
1550 |
+
"loss": 0.1685,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.46,
|
1555 |
+
"learning_rate": 1.2100492287794186e-05,
|
1556 |
+
"loss": 0.1403,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.47,
|
1561 |
+
"learning_rate": 1.2042172459300546e-05,
|
1562 |
+
"loss": 0.0443,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.47,
|
1567 |
+
"learning_rate": 1.198378005871467e-05,
|
1568 |
+
"loss": 0.3589,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.47,
|
1573 |
+
"learning_rate": 1.192531716111042e-05,
|
1574 |
+
"loss": 0.0427,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.47,
|
1579 |
+
"learning_rate": 1.1866785844066884e-05,
|
1580 |
+
"loss": 0.1103,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.47,
|
1585 |
+
"learning_rate": 1.1808188187594549e-05,
|
1586 |
+
"loss": 0.2563,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.48,
|
1591 |
+
"learning_rate": 1.1749526274061394e-05,
|
1592 |
+
"loss": 0.1494,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.48,
|
1597 |
+
"learning_rate": 1.1690802188118878e-05,
|
1598 |
+
"loss": 0.1105,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.48,
|
1603 |
+
"learning_rate": 1.1632018016627859e-05,
|
1604 |
+
"loss": 0.082,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.48,
|
1609 |
+
"learning_rate": 1.1573175848584455e-05,
|
1610 |
+
"loss": 0.3555,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.48,
|
1615 |
+
"learning_rate": 1.1514277775045768e-05,
|
1616 |
+
"loss": 0.0603,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.48,
|
1621 |
+
"learning_rate": 1.1455325889055616e-05,
|
1622 |
+
"loss": 0.2883,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.49,
|
1627 |
+
"learning_rate": 1.1396322285570119e-05,
|
1628 |
+
"loss": 0.054,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.49,
|
1633 |
+
"learning_rate": 1.1337269061383278e-05,
|
1634 |
+
"loss": 0.0668,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.49,
|
1639 |
+
"learning_rate": 1.1278168315052445e-05,
|
1640 |
+
"loss": 0.1454,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.49,
|
1645 |
+
"learning_rate": 1.1219022146823762e-05,
|
1646 |
+
"loss": 0.0619,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.49,
|
1651 |
+
"learning_rate": 1.1159832658557498e-05,
|
1652 |
+
"loss": 0.0449,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 0.5,
|
1657 |
+
"learning_rate": 1.1100601953653393e-05,
|
1658 |
+
"loss": 0.0684,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.5,
|
1663 |
+
"learning_rate": 1.1041332136975874e-05,
|
1664 |
+
"loss": 0.0273,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.5,
|
1669 |
+
"learning_rate": 1.0982025314779287e-05,
|
1670 |
+
"loss": 0.2375,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.5,
|
1675 |
+
"learning_rate": 1.092268359463302e-05,
|
1676 |
+
"loss": 0.0353,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.5,
|
1681 |
+
"learning_rate": 1.086330908534663e-05,
|
1682 |
+
"loss": 0.1224,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.5,
|
1687 |
+
"learning_rate": 1.0803903896894877e-05,
|
1688 |
+
"loss": 0.1297,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.51,
|
1693 |
+
"learning_rate": 1.0744470140342775e-05,
|
1694 |
+
"loss": 0.4464,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 0.51,
|
1699 |
+
"learning_rate": 1.0685009927770542e-05,
|
1700 |
+
"loss": 0.103,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.51,
|
1705 |
+
"learning_rate": 1.0625525372198564e-05,
|
1706 |
+
"loss": 0.0881,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.51,
|
1711 |
+
"learning_rate": 1.056601858751229e-05,
|
1712 |
+
"loss": 0.075,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.51,
|
1717 |
+
"learning_rate": 1.0506491688387128e-05,
|
1718 |
+
"loss": 0.0677,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.52,
|
1723 |
+
"learning_rate": 1.0446946790213275e-05,
|
1724 |
+
"loss": 0.2301,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.52,
|
1729 |
+
"learning_rate": 1.0387386009020569e-05,
|
1730 |
+
"loss": 0.0737,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.52,
|
1735 |
+
"learning_rate": 1.032781146140326e-05,
|
1736 |
+
"loss": 0.1262,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 0.52,
|
1741 |
+
"learning_rate": 1.0268225264444829e-05,
|
1742 |
+
"loss": 0.0252,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.52,
|
1747 |
+
"learning_rate": 1.0208629535642726e-05,
|
1748 |
+
"loss": 0.0192,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.52,
|
1753 |
+
"learning_rate": 1.0149026392833137e-05,
|
1754 |
+
"loss": 0.257,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.53,
|
1759 |
+
"learning_rate": 1.0089417954115715e-05,
|
1760 |
+
"loss": 0.1876,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.53,
|
1765 |
+
"learning_rate": 1.002980633777831e-05,
|
1766 |
+
"loss": 0.0341,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.53,
|
1771 |
+
"learning_rate": 9.970193662221694e-06,
|
1772 |
+
"loss": 0.232,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.53,
|
1777 |
+
"learning_rate": 9.910582045884292e-06,
|
1778 |
+
"loss": 0.1429,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.53,
|
1783 |
+
"learning_rate": 9.850973607166865e-06,
|
1784 |
+
"loss": 0.2432,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.54,
|
1789 |
+
"learning_rate": 9.791370464357279e-06,
|
1790 |
+
"loss": 0.0288,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.54,
|
1795 |
+
"learning_rate": 9.731774735555174e-06,
|
1796 |
+
"loss": 0.2272,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.54,
|
1801 |
+
"learning_rate": 9.672188538596746e-06,
|
1802 |
+
"loss": 0.1102,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.54,
|
1807 |
+
"learning_rate": 9.612613990979436e-06,
|
1808 |
+
"loss": 0.0529,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.54,
|
1813 |
+
"learning_rate": 9.553053209786725e-06,
|
1814 |
+
"loss": 0.1721,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.54,
|
1819 |
+
"learning_rate": 9.493508311612874e-06,
|
1820 |
+
"loss": 0.0046,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.55,
|
1825 |
+
"learning_rate": 9.433981412487711e-06,
|
1826 |
+
"loss": 0.043,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.55,
|
1831 |
+
"learning_rate": 9.374474627801439e-06,
|
1832 |
+
"loss": 0.0589,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.55,
|
1837 |
+
"learning_rate": 9.314990072229461e-06,
|
1838 |
+
"loss": 0.0114,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.55,
|
1843 |
+
"learning_rate": 9.25552985965723e-06,
|
1844 |
+
"loss": 0.1645,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.55,
|
1849 |
+
"learning_rate": 9.196096103105127e-06,
|
1850 |
+
"loss": 0.2002,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.55,
|
1855 |
+
"learning_rate": 9.136690914653377e-06,
|
1856 |
+
"loss": 0.057,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.56,
|
1861 |
+
"learning_rate": 9.07731640536698e-06,
|
1862 |
+
"loss": 0.1744,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.56,
|
1867 |
+
"learning_rate": 9.017974685220716e-06,
|
1868 |
+
"loss": 0.0343,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.56,
|
1873 |
+
"learning_rate": 8.958667863024127e-06,
|
1874 |
+
"loss": 0.0405,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.56,
|
1879 |
+
"learning_rate": 8.899398046346608e-06,
|
1880 |
+
"loss": 0.2055,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.56,
|
1885 |
+
"learning_rate": 8.840167341442505e-06,
|
1886 |
+
"loss": 0.0673,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.57,
|
1891 |
+
"learning_rate": 8.78097785317624e-06,
|
1892 |
+
"loss": 0.0291,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.57,
|
1897 |
+
"learning_rate": 8.721831684947557e-06,
|
1898 |
+
"loss": 0.2443,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.57,
|
1903 |
+
"learning_rate": 8.662730938616724e-06,
|
1904 |
+
"loss": 0.058,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.57,
|
1909 |
+
"learning_rate": 8.603677714429888e-06,
|
1910 |
+
"loss": 0.2347,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.57,
|
1915 |
+
"learning_rate": 8.54467411094439e-06,
|
1916 |
+
"loss": 0.0307,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.57,
|
1921 |
+
"learning_rate": 8.485722224954237e-06,
|
1922 |
+
"loss": 0.0094,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.58,
|
1927 |
+
"learning_rate": 8.426824151415548e-06,
|
1928 |
+
"loss": 0.0724,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.58,
|
1933 |
+
"learning_rate": 8.367981983372143e-06,
|
1934 |
+
"loss": 0.0816,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.58,
|
1939 |
+
"learning_rate": 8.309197811881128e-06,
|
1940 |
+
"loss": 0.0375,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.58,
|
1945 |
+
"learning_rate": 8.250473725938608e-06,
|
1946 |
+
"loss": 0.0106,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.58,
|
1951 |
+
"learning_rate": 8.191811812405453e-06,
|
1952 |
+
"loss": 0.0701,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.59,
|
1957 |
+
"learning_rate": 8.133214155933118e-06,
|
1958 |
+
"loss": 0.0134,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.59,
|
1963 |
+
"learning_rate": 8.074682838889581e-06,
|
1964 |
+
"loss": 0.1992,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 0.59,
|
1969 |
+
"learning_rate": 8.01621994128533e-06,
|
1970 |
+
"loss": 0.1688,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.59,
|
1975 |
+
"learning_rate": 7.95782754069946e-06,
|
1976 |
+
"loss": 0.2751,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.59,
|
1981 |
+
"learning_rate": 7.899507712205818e-06,
|
1982 |
+
"loss": 0.0192,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.59,
|
1987 |
+
"learning_rate": 7.841262528299296e-06,
|
1988 |
+
"loss": 0.0797,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 0.6,
|
1993 |
+
"learning_rate": 7.783094058822147e-06,
|
1994 |
+
"loss": 0.0867,
|
1995 |
+
"step": 331
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.6,
|
1999 |
+
"learning_rate": 7.72500437089046e-06,
|
2000 |
+
"loss": 0.0445,
|
2001 |
+
"step": 332
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 0.6,
|
2005 |
+
"learning_rate": 7.666995528820673e-06,
|
2006 |
+
"loss": 0.1654,
|
2007 |
+
"step": 333
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 0.6,
|
2011 |
+
"learning_rate": 7.609069594056234e-06,
|
2012 |
+
"loss": 0.0168,
|
2013 |
+
"step": 334
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 0.6,
|
2017 |
+
"learning_rate": 7.551228625094349e-06,
|
2018 |
+
"loss": 0.0779,
|
2019 |
+
"step": 335
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.61,
|
2023 |
+
"learning_rate": 7.493474677412795e-06,
|
2024 |
+
"loss": 0.0444,
|
2025 |
+
"step": 336
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.61,
|
2029 |
+
"learning_rate": 7.435809803396923e-06,
|
2030 |
+
"loss": 0.1839,
|
2031 |
+
"step": 337
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 0.61,
|
2035 |
+
"learning_rate": 7.37823605226668e-06,
|
2036 |
+
"loss": 0.3834,
|
2037 |
+
"step": 338
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.61,
|
2041 |
+
"learning_rate": 7.320755470003822e-06,
|
2042 |
+
"loss": 0.0261,
|
2043 |
+
"step": 339
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 0.61,
|
2047 |
+
"learning_rate": 7.263370099279173e-06,
|
2048 |
+
"loss": 0.0084,
|
2049 |
+
"step": 340
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 0.61,
|
2053 |
+
"learning_rate": 7.2060819793800665e-06,
|
2054 |
+
"loss": 0.0469,
|
2055 |
+
"step": 341
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 0.62,
|
2059 |
+
"learning_rate": 7.148893146137852e-06,
|
2060 |
+
"loss": 0.3605,
|
2061 |
+
"step": 342
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.62,
|
2065 |
+
"learning_rate": 7.091805631855566e-06,
|
2066 |
+
"loss": 0.0621,
|
2067 |
+
"step": 343
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.62,
|
2071 |
+
"learning_rate": 7.034821465235693e-06,
|
2072 |
+
"loss": 0.099,
|
2073 |
+
"step": 344
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 0.62,
|
2077 |
+
"learning_rate": 6.977942671308087e-06,
|
2078 |
+
"loss": 0.0641,
|
2079 |
+
"step": 345
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.62,
|
2083 |
+
"learning_rate": 6.921171271358007e-06,
|
2084 |
+
"loss": 0.0859,
|
2085 |
+
"step": 346
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 0.63,
|
2089 |
+
"learning_rate": 6.864509282854272e-06,
|
2090 |
+
"loss": 0.0564,
|
2091 |
+
"step": 347
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 0.63,
|
2095 |
+
"learning_rate": 6.8079587193775935e-06,
|
2096 |
+
"loss": 0.0405,
|
2097 |
+
"step": 348
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 0.63,
|
2101 |
+
"learning_rate": 6.751521590548986e-06,
|
2102 |
+
"loss": 0.101,
|
2103 |
+
"step": 349
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.63,
|
2107 |
+
"learning_rate": 6.695199901958386e-06,
|
2108 |
+
"loss": 0.1178,
|
2109 |
+
"step": 350
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.63,
|
2113 |
+
"learning_rate": 6.638995655093351e-06,
|
2114 |
+
"loss": 0.2406,
|
2115 |
+
"step": 351
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 0.63,
|
2119 |
+
"learning_rate": 6.582910847267957e-06,
|
2120 |
+
"loss": 0.1846,
|
2121 |
+
"step": 352
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.64,
|
2125 |
+
"learning_rate": 6.526947471551799e-06,
|
2126 |
+
"loss": 0.1374,
|
2127 |
+
"step": 353
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 0.64,
|
2131 |
+
"learning_rate": 6.471107516699183e-06,
|
2132 |
+
"loss": 0.0863,
|
2133 |
+
"step": 354
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 0.64,
|
2137 |
+
"learning_rate": 6.415392967078438e-06,
|
2138 |
+
"loss": 0.0755,
|
2139 |
+
"step": 355
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 0.64,
|
2143 |
+
"learning_rate": 6.3598058026013995e-06,
|
2144 |
+
"loss": 0.0732,
|
2145 |
+
"step": 356
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.64,
|
2149 |
+
"learning_rate": 6.304347998653074e-06,
|
2150 |
+
"loss": 0.0555,
|
2151 |
+
"step": 357
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.65,
|
2155 |
+
"learning_rate": 6.24902152602139e-06,
|
2156 |
+
"loss": 0.0475,
|
2157 |
+
"step": 358
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.65,
|
2161 |
+
"learning_rate": 6.193828350827222e-06,
|
2162 |
+
"loss": 0.036,
|
2163 |
+
"step": 359
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.65,
|
2167 |
+
"learning_rate": 6.1387704344544684e-06,
|
2168 |
+
"loss": 0.2679,
|
2169 |
+
"step": 360
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 0.65,
|
2173 |
+
"learning_rate": 6.083849733480394e-06,
|
2174 |
+
"loss": 0.0661,
|
2175 |
+
"step": 361
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 0.65,
|
2179 |
+
"learning_rate": 6.0290681996060605e-06,
|
2180 |
+
"loss": 0.0362,
|
2181 |
+
"step": 362
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 0.65,
|
2185 |
+
"learning_rate": 5.974427779587004e-06,
|
2186 |
+
"loss": 0.0815,
|
2187 |
+
"step": 363
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.66,
|
2191 |
+
"learning_rate": 5.919930415164033e-06,
|
2192 |
+
"loss": 0.0205,
|
2193 |
+
"step": 364
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.66,
|
2197 |
+
"learning_rate": 5.865578042994227e-06,
|
2198 |
+
"loss": 0.0065,
|
2199 |
+
"step": 365
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 0.66,
|
2203 |
+
"learning_rate": 5.8113725945821245e-06,
|
2204 |
+
"loss": 0.2377,
|
2205 |
+
"step": 366
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 0.66,
|
2209 |
+
"learning_rate": 5.757315996211066e-06,
|
2210 |
+
"loss": 0.0673,
|
2211 |
+
"step": 367
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 0.66,
|
2215 |
+
"learning_rate": 5.703410168874768e-06,
|
2216 |
+
"loss": 0.1033,
|
2217 |
+
"step": 368
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 0.66,
|
2221 |
+
"learning_rate": 5.649657028209024e-06,
|
2222 |
+
"loss": 0.1259,
|
2223 |
+
"step": 369
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 0.67,
|
2227 |
+
"learning_rate": 5.5960584844236565e-06,
|
2228 |
+
"loss": 0.0052,
|
2229 |
+
"step": 370
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.67,
|
2233 |
+
"learning_rate": 5.542616442234618e-06,
|
2234 |
+
"loss": 0.1048,
|
2235 |
+
"step": 371
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.67,
|
2239 |
+
"learning_rate": 5.48933280079631e-06,
|
2240 |
+
"loss": 0.3342,
|
2241 |
+
"step": 372
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 0.67,
|
2245 |
+
"learning_rate": 5.436209453634087e-06,
|
2246 |
+
"loss": 0.0725,
|
2247 |
+
"step": 373
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 0.67,
|
2251 |
+
"learning_rate": 5.3832482885769855e-06,
|
2252 |
+
"loss": 0.1597,
|
2253 |
+
"step": 374
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 0.68,
|
2257 |
+
"learning_rate": 5.330451187690614e-06,
|
2258 |
+
"loss": 0.2186,
|
2259 |
+
"step": 375
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 0.68,
|
2263 |
+
"learning_rate": 5.277820027210279e-06,
|
2264 |
+
"loss": 0.0521,
|
2265 |
+
"step": 376
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 0.68,
|
2269 |
+
"learning_rate": 5.225356677474309e-06,
|
2270 |
+
"loss": 0.0426,
|
2271 |
+
"step": 377
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.68,
|
2275 |
+
"learning_rate": 5.1730630028576055e-06,
|
2276 |
+
"loss": 0.1171,
|
2277 |
+
"step": 378
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.68,
|
2281 |
+
"learning_rate": 5.120940861705357e-06,
|
2282 |
+
"loss": 0.0551,
|
2283 |
+
"step": 379
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 0.68,
|
2287 |
+
"learning_rate": 5.068992106267021e-06,
|
2288 |
+
"loss": 0.1238,
|
2289 |
+
"step": 380
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 0.69,
|
2293 |
+
"learning_rate": 5.017218582630507e-06,
|
2294 |
+
"loss": 0.4425,
|
2295 |
+
"step": 381
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 0.69,
|
2299 |
+
"learning_rate": 4.965622130656551e-06,
|
2300 |
+
"loss": 0.1591,
|
2301 |
+
"step": 382
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 0.69,
|
2305 |
+
"learning_rate": 4.914204583913349e-06,
|
2306 |
+
"loss": 0.0568,
|
2307 |
+
"step": 383
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 0.69,
|
2311 |
+
"learning_rate": 4.862967769611389e-06,
|
2312 |
+
"loss": 0.0159,
|
2313 |
+
"step": 384
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.69,
|
2317 |
+
"learning_rate": 4.8119135085385375e-06,
|
2318 |
+
"loss": 0.055,
|
2319 |
+
"step": 385
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.7,
|
2323 |
+
"learning_rate": 4.7610436149953e-06,
|
2324 |
+
"loss": 0.0356,
|
2325 |
+
"step": 386
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 0.7,
|
2329 |
+
"learning_rate": 4.710359896730379e-06,
|
2330 |
+
"loss": 0.0969,
|
2331 |
+
"step": 387
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 0.7,
|
2335 |
+
"learning_rate": 4.659864154876411e-06,
|
2336 |
+
"loss": 0.1161,
|
2337 |
+
"step": 388
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 0.7,
|
2341 |
+
"learning_rate": 4.609558183885979e-06,
|
2342 |
+
"loss": 0.0437,
|
2343 |
+
"step": 389
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 0.7,
|
2347 |
+
"learning_rate": 4.559443771467833e-06,
|
2348 |
+
"loss": 0.1526,
|
2349 |
+
"step": 390
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 0.7,
|
2353 |
+
"learning_rate": 4.509522698523352e-06,
|
2354 |
+
"loss": 0.0183,
|
2355 |
+
"step": 391
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.71,
|
2359 |
+
"learning_rate": 4.4597967390832745e-06,
|
2360 |
+
"loss": 0.073,
|
2361 |
+
"step": 392
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.71,
|
2365 |
+
"learning_rate": 4.4102676602446375e-06,
|
2366 |
+
"loss": 0.0411,
|
2367 |
+
"step": 393
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 0.71,
|
2371 |
+
"learning_rate": 4.360937222108002e-06,
|
2372 |
+
"loss": 0.0524,
|
2373 |
+
"step": 394
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 0.71,
|
2377 |
+
"learning_rate": 4.3118071777148865e-06,
|
2378 |
+
"loss": 0.1156,
|
2379 |
+
"step": 395
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 0.71,
|
2383 |
+
"learning_rate": 4.262879272985468e-06,
|
2384 |
+
"loss": 0.0311,
|
2385 |
+
"step": 396
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 0.72,
|
2389 |
+
"learning_rate": 4.21415524665655e-06,
|
2390 |
+
"loss": 0.1253,
|
2391 |
+
"step": 397
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 0.72,
|
2395 |
+
"learning_rate": 4.165636830219776e-06,
|
2396 |
+
"loss": 0.0589,
|
2397 |
+
"step": 398
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.72,
|
2401 |
+
"learning_rate": 4.117325747860077e-06,
|
2402 |
+
"loss": 0.0248,
|
2403 |
+
"step": 399
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.72,
|
2407 |
+
"learning_rate": 4.069223716394419e-06,
|
2408 |
+
"loss": 0.0164,
|
2409 |
+
"step": 400
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 0.72,
|
2413 |
+
"learning_rate": 4.021332445210785e-06,
|
2414 |
+
"loss": 0.1801,
|
2415 |
+
"step": 401
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 0.72,
|
2419 |
+
"learning_rate": 3.973653636207437e-06,
|
2420 |
+
"loss": 0.107,
|
2421 |
+
"step": 402
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 0.73,
|
2425 |
+
"learning_rate": 3.9261889837324245e-06,
|
2426 |
+
"loss": 0.0477,
|
2427 |
+
"step": 403
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 0.73,
|
2431 |
+
"learning_rate": 3.878940174523371e-06,
|
2432 |
+
"loss": 0.0214,
|
2433 |
+
"step": 404
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 0.73,
|
2437 |
+
"learning_rate": 3.8319088876475595e-06,
|
2438 |
+
"loss": 0.1071,
|
2439 |
+
"step": 405
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.73,
|
2443 |
+
"learning_rate": 3.785096794442229e-06,
|
2444 |
+
"loss": 0.071,
|
2445 |
+
"step": 406
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.73,
|
2449 |
+
"learning_rate": 3.7385055584552e-06,
|
2450 |
+
"loss": 0.0623,
|
2451 |
+
"step": 407
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 0.74,
|
2455 |
+
"learning_rate": 3.6921368353857524e-06,
|
2456 |
+
"loss": 0.0534,
|
2457 |
+
"step": 408
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 0.74,
|
2461 |
+
"learning_rate": 3.645992273025797e-06,
|
2462 |
+
"loss": 0.1143,
|
2463 |
+
"step": 409
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 0.74,
|
2467 |
+
"learning_rate": 3.6000735112012984e-06,
|
2468 |
+
"loss": 0.1056,
|
2469 |
+
"step": 410
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 0.74,
|
2473 |
+
"learning_rate": 3.5543821817140313e-06,
|
2474 |
+
"loss": 0.0537,
|
2475 |
+
"step": 411
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 0.74,
|
2479 |
+
"learning_rate": 3.5089199082835436e-06,
|
2480 |
+
"loss": 0.0065,
|
2481 |
+
"step": 412
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.74,
|
2485 |
+
"learning_rate": 3.463688306489511e-06,
|
2486 |
+
"loss": 0.0995,
|
2487 |
+
"step": 413
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.75,
|
2491 |
+
"learning_rate": 3.418688983714291e-06,
|
2492 |
+
"loss": 0.0818,
|
2493 |
+
"step": 414
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 0.75,
|
2497 |
+
"learning_rate": 3.373923539085805e-06,
|
2498 |
+
"loss": 0.0481,
|
2499 |
+
"step": 415
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 0.75,
|
2503 |
+
"learning_rate": 3.329393563420713e-06,
|
2504 |
+
"loss": 0.1379,
|
2505 |
+
"step": 416
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 0.75,
|
2509 |
+
"learning_rate": 3.285100639167883e-06,
|
2510 |
+
"loss": 0.1759,
|
2511 |
+
"step": 417
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 0.75,
|
2515 |
+
"learning_rate": 3.2410463403521653e-06,
|
2516 |
+
"loss": 0.0599,
|
2517 |
+
"step": 418
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 0.75,
|
2521 |
+
"learning_rate": 3.1972322325184347e-06,
|
2522 |
+
"loss": 0.0898,
|
2523 |
+
"step": 419
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.76,
|
2527 |
+
"learning_rate": 3.1536598726759747e-06,
|
2528 |
+
"loss": 0.0079,
|
2529 |
+
"step": 420
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.76,
|
2533 |
+
"learning_rate": 3.110330809243134e-06,
|
2534 |
+
"loss": 0.0185,
|
2535 |
+
"step": 421
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 0.76,
|
2539 |
+
"learning_rate": 3.0672465819923215e-06,
|
2540 |
+
"loss": 0.0792,
|
2541 |
+
"step": 422
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 0.76,
|
2545 |
+
"learning_rate": 3.0244087219952565e-06,
|
2546 |
+
"loss": 0.1059,
|
2547 |
+
"step": 423
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 0.76,
|
2551 |
+
"learning_rate": 2.981818751568586e-06,
|
2552 |
+
"loss": 0.044,
|
2553 |
+
"step": 424
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 0.77,
|
2557 |
+
"learning_rate": 2.939478184219777e-06,
|
2558 |
+
"loss": 0.0766,
|
2559 |
+
"step": 425
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 0.77,
|
2563 |
+
"learning_rate": 2.8973885245933287e-06,
|
2564 |
+
"loss": 0.1558,
|
2565 |
+
"step": 426
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.77,
|
2569 |
+
"learning_rate": 2.855551268417305e-06,
|
2570 |
+
"loss": 0.0052,
|
2571 |
+
"step": 427
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.77,
|
2575 |
+
"learning_rate": 2.813967902450179e-06,
|
2576 |
+
"loss": 0.0747,
|
2577 |
+
"step": 428
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 0.77,
|
2581 |
+
"learning_rate": 2.7726399044280107e-06,
|
2582 |
+
"loss": 0.0868,
|
2583 |
+
"step": 429
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 0.77,
|
2587 |
+
"learning_rate": 2.7315687430119097e-06,
|
2588 |
+
"loss": 0.047,
|
2589 |
+
"step": 430
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 0.78,
|
2593 |
+
"learning_rate": 2.6907558777358756e-06,
|
2594 |
+
"loss": 0.0721,
|
2595 |
+
"step": 431
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 0.78,
|
2599 |
+
"learning_rate": 2.650202758954886e-06,
|
2600 |
+
"loss": 0.128,
|
2601 |
+
"step": 432
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 0.78,
|
2605 |
+
"learning_rate": 2.6099108277934105e-06,
|
2606 |
+
"loss": 0.08,
|
2607 |
+
"step": 433
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.78,
|
2611 |
+
"learning_rate": 2.5698815160941494e-06,
|
2612 |
+
"loss": 0.0901,
|
2613 |
+
"step": 434
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.78,
|
2617 |
+
"learning_rate": 2.5301162463671845e-06,
|
2618 |
+
"loss": 0.0965,
|
2619 |
+
"step": 435
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 0.79,
|
2623 |
+
"learning_rate": 2.4906164317394067e-06,
|
2624 |
+
"loss": 0.062,
|
2625 |
+
"step": 436
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 0.79,
|
2629 |
+
"learning_rate": 2.451383475904304e-06,
|
2630 |
+
"loss": 0.0634,
|
2631 |
+
"step": 437
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 0.79,
|
2635 |
+
"learning_rate": 2.4124187730720916e-06,
|
2636 |
+
"loss": 0.1525,
|
2637 |
+
"step": 438
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 0.79,
|
2641 |
+
"learning_rate": 2.3737237079201437e-06,
|
2642 |
+
"loss": 0.1071,
|
2643 |
+
"step": 439
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 0.79,
|
2647 |
+
"learning_rate": 2.3352996555438036e-06,
|
2648 |
+
"loss": 0.0409,
|
2649 |
+
"step": 440
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.79,
|
2653 |
+
"learning_rate": 2.297147981407509e-06,
|
2654 |
+
"loss": 0.1753,
|
2655 |
+
"step": 441
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.8,
|
2659 |
+
"learning_rate": 2.2592700412962775e-06,
|
2660 |
+
"loss": 0.175,
|
2661 |
+
"step": 442
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 0.8,
|
2665 |
+
"learning_rate": 2.2216671812675118e-06,
|
2666 |
+
"loss": 0.0348,
|
2667 |
+
"step": 443
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 0.8,
|
2671 |
+
"learning_rate": 2.184340737603178e-06,
|
2672 |
+
"loss": 0.105,
|
2673 |
+
"step": 444
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 0.8,
|
2677 |
+
"learning_rate": 2.1472920367623094e-06,
|
2678 |
+
"loss": 0.0477,
|
2679 |
+
"step": 445
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 0.8,
|
2683 |
+
"learning_rate": 2.1105223953338805e-06,
|
2684 |
+
"loss": 0.0176,
|
2685 |
+
"step": 446
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 0.81,
|
2689 |
+
"learning_rate": 2.0740331199900053e-06,
|
2690 |
+
"loss": 0.6195,
|
2691 |
+
"step": 447
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.81,
|
2695 |
+
"learning_rate": 2.0378255074395094e-06,
|
2696 |
+
"loss": 0.0913,
|
2697 |
+
"step": 448
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.81,
|
2701 |
+
"learning_rate": 2.001900844381857e-06,
|
2702 |
+
"loss": 0.0386,
|
2703 |
+
"step": 449
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 0.81,
|
2707 |
+
"learning_rate": 1.9662604074614044e-06,
|
2708 |
+
"loss": 0.1309,
|
2709 |
+
"step": 450
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 0.81,
|
2713 |
+
"learning_rate": 1.9309054632220645e-06,
|
2714 |
+
"loss": 0.0218,
|
2715 |
+
"step": 451
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 0.81,
|
2719 |
+
"learning_rate": 1.895837268062256e-06,
|
2720 |
+
"loss": 0.0185,
|
2721 |
+
"step": 452
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 0.82,
|
2725 |
+
"learning_rate": 1.8610570681903018e-06,
|
2726 |
+
"loss": 0.3416,
|
2727 |
+
"step": 453
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 0.82,
|
2731 |
+
"learning_rate": 1.8265660995801004e-06,
|
2732 |
+
"loss": 0.2817,
|
2733 |
+
"step": 454
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.82,
|
2737 |
+
"learning_rate": 1.7923655879272395e-06,
|
2738 |
+
"loss": 0.0182,
|
2739 |
+
"step": 455
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.82,
|
2743 |
+
"learning_rate": 1.7584567486054039e-06,
|
2744 |
+
"loss": 0.0665,
|
2745 |
+
"step": 456
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 0.82,
|
2749 |
+
"learning_rate": 1.7248407866232175e-06,
|
2750 |
+
"loss": 0.0403,
|
2751 |
+
"step": 457
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 0.83,
|
2755 |
+
"learning_rate": 1.6915188965814034e-06,
|
2756 |
+
"loss": 0.017,
|
2757 |
+
"step": 458
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 0.83,
|
2761 |
+
"learning_rate": 1.6915188965814034e-06,
|
2762 |
+
"loss": 0.3175,
|
2763 |
+
"step": 459
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 0.83,
|
2767 |
+
"learning_rate": 1.6584922626303325e-06,
|
2768 |
+
"loss": 0.0474,
|
2769 |
+
"step": 460
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 0.83,
|
2773 |
+
"learning_rate": 1.6257620584279454e-06,
|
2774 |
+
"loss": 0.0881,
|
2775 |
+
"step": 461
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.83,
|
2779 |
+
"learning_rate": 1.5933294470980443e-06,
|
2780 |
+
"loss": 0.0475,
|
2781 |
+
"step": 462
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.83,
|
2785 |
+
"learning_rate": 1.5611955811889645e-06,
|
2786 |
+
"loss": 0.0473,
|
2787 |
+
"step": 463
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 0.84,
|
2791 |
+
"learning_rate": 1.5293616026326053e-06,
|
2792 |
+
"loss": 0.0143,
|
2793 |
+
"step": 464
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 0.84,
|
2797 |
+
"learning_rate": 1.4978286427038602e-06,
|
2798 |
+
"loss": 0.1228,
|
2799 |
+
"step": 465
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 0.84,
|
2803 |
+
"learning_rate": 1.4665978219804056e-06,
|
2804 |
+
"loss": 0.2635,
|
2805 |
+
"step": 466
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 0.84,
|
2809 |
+
"learning_rate": 1.435670250302892e-06,
|
2810 |
+
"loss": 0.0668,
|
2811 |
+
"step": 467
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 0.84,
|
2815 |
+
"learning_rate": 1.405047026735491e-06,
|
2816 |
+
"loss": 0.082,
|
2817 |
+
"step": 468
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.85,
|
2821 |
+
"learning_rate": 1.3747292395268407e-06,
|
2822 |
+
"loss": 0.085,
|
2823 |
+
"step": 469
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.85,
|
2827 |
+
"learning_rate": 1.344717966071385e-06,
|
2828 |
+
"loss": 0.1178,
|
2829 |
+
"step": 470
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 0.85,
|
2833 |
+
"learning_rate": 1.3150142728710669e-06,
|
2834 |
+
"loss": 0.0633,
|
2835 |
+
"step": 471
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 0.85,
|
2839 |
+
"learning_rate": 1.2856192154974488e-06,
|
2840 |
+
"loss": 0.0229,
|
2841 |
+
"step": 472
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 0.85,
|
2845 |
+
"learning_rate": 1.2565338385541792e-06,
|
2846 |
+
"loss": 0.0356,
|
2847 |
+
"step": 473
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 0.85,
|
2851 |
+
"learning_rate": 1.2277591756398933e-06,
|
2852 |
+
"loss": 0.1599,
|
2853 |
+
"step": 474
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 0.86,
|
2857 |
+
"learning_rate": 1.1992962493114645e-06,
|
2858 |
+
"loss": 0.0168,
|
2859 |
+
"step": 475
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.86,
|
2863 |
+
"learning_rate": 1.171146071047683e-06,
|
2864 |
+
"loss": 0.0626,
|
2865 |
+
"step": 476
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.86,
|
2869 |
+
"learning_rate": 1.1433096412132838e-06,
|
2870 |
+
"loss": 0.1343,
|
2871 |
+
"step": 477
|
2872 |
+
},
|
2873 |
+
{
|
2874 |
+
"epoch": 0.86,
|
2875 |
+
"learning_rate": 1.1157879490234346e-06,
|
2876 |
+
"loss": 0.0529,
|
2877 |
+
"step": 478
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 0.86,
|
2881 |
+
"learning_rate": 1.088581972508549e-06,
|
2882 |
+
"loss": 0.0556,
|
2883 |
+
"step": 479
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 0.86,
|
2887 |
+
"learning_rate": 1.0616926784795511e-06,
|
2888 |
+
"loss": 0.0903,
|
2889 |
+
"step": 480
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 0.87,
|
2893 |
+
"learning_rate": 1.035121022493506e-06,
|
2894 |
+
"loss": 0.0993,
|
2895 |
+
"step": 481
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 0.87,
|
2899 |
+
"learning_rate": 1.0088679488196695e-06,
|
2900 |
+
"loss": 0.0673,
|
2901 |
+
"step": 482
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.87,
|
2905 |
+
"learning_rate": 9.829343904059342e-07,
|
2906 |
+
"loss": 0.018,
|
2907 |
+
"step": 483
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.87,
|
2911 |
+
"learning_rate": 9.573212688456635e-07,
|
2912 |
+
"loss": 0.1005,
|
2913 |
+
"step": 484
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 0.87,
|
2917 |
+
"learning_rate": 9.320294943449537e-07,
|
2918 |
+
"loss": 0.0859,
|
2919 |
+
"step": 485
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 0.88,
|
2923 |
+
"learning_rate": 9.070599656902801e-07,
|
2924 |
+
"loss": 0.0361,
|
2925 |
+
"step": 486
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 0.88,
|
2929 |
+
"learning_rate": 8.824135702165693e-07,
|
2930 |
+
"loss": 0.0256,
|
2931 |
+
"step": 487
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 0.88,
|
2935 |
+
"learning_rate": 8.580911837756467e-07,
|
2936 |
+
"loss": 0.0652,
|
2937 |
+
"step": 488
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 0.88,
|
2941 |
+
"learning_rate": 8.340936707051273e-07,
|
2942 |
+
"loss": 0.103,
|
2943 |
+
"step": 489
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.88,
|
2947 |
+
"learning_rate": 8.10421883797694e-07,
|
2948 |
+
"loss": 0.0589,
|
2949 |
+
"step": 490
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.88,
|
2953 |
+
"learning_rate": 7.87076664270795e-07,
|
2954 |
+
"loss": 0.1919,
|
2955 |
+
"step": 491
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 0.89,
|
2959 |
+
"learning_rate": 7.6405884173675e-07,
|
2960 |
+
"loss": 0.1313,
|
2961 |
+
"step": 492
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 0.89,
|
2965 |
+
"learning_rate": 7.413692341732582e-07,
|
2966 |
+
"loss": 0.0657,
|
2967 |
+
"step": 493
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 0.89,
|
2971 |
+
"learning_rate": 7.190086478943459e-07,
|
2972 |
+
"loss": 0.1785,
|
2973 |
+
"step": 494
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 0.89,
|
2977 |
+
"learning_rate": 6.969778775217007e-07,
|
2978 |
+
"loss": 0.1866,
|
2979 |
+
"step": 495
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 0.89,
|
2983 |
+
"learning_rate": 6.752777059564431e-07,
|
2984 |
+
"loss": 0.0295,
|
2985 |
+
"step": 496
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.9,
|
2989 |
+
"learning_rate": 6.539089043512914e-07,
|
2990 |
+
"loss": 0.0316,
|
2991 |
+
"step": 497
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.9,
|
2995 |
+
"learning_rate": 6.328722320831737e-07,
|
2996 |
+
"loss": 0.0702,
|
2997 |
+
"step": 498
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 0.9,
|
3001 |
+
"learning_rate": 6.121684367262271e-07,
|
3002 |
+
"loss": 0.0271,
|
3003 |
+
"step": 499
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 0.9,
|
3007 |
+
"learning_rate": 5.917982540252442e-07,
|
3008 |
+
"loss": 0.0398,
|
3009 |
+
"step": 500
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 0.9,
|
3013 |
+
"learning_rate": 5.71762407869515e-07,
|
3014 |
+
"loss": 0.2131,
|
3015 |
+
"step": 501
|
3016 |
+
},
|
3017 |
+
{
|
3018 |
+
"epoch": 0.9,
|
3019 |
+
"learning_rate": 5.520616102671128e-07,
|
3020 |
+
"loss": 0.217,
|
3021 |
+
"step": 502
|
3022 |
+
},
|
3023 |
+
{
|
3024 |
+
"epoch": 0.91,
|
3025 |
+
"learning_rate": 5.326965613195867e-07,
|
3026 |
+
"loss": 0.0161,
|
3027 |
+
"step": 503
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 0.91,
|
3031 |
+
"learning_rate": 5.136679491970809e-07,
|
3032 |
+
"loss": 0.0338,
|
3033 |
+
"step": 504
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.91,
|
3037 |
+
"learning_rate": 4.949764501138832e-07,
|
3038 |
+
"loss": 0.0178,
|
3039 |
+
"step": 505
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 0.91,
|
3043 |
+
"learning_rate": 4.766227283043912e-07,
|
3044 |
+
"loss": 0.0056,
|
3045 |
+
"step": 506
|
3046 |
+
},
|
3047 |
+
{
|
3048 |
+
"epoch": 0.91,
|
3049 |
+
"learning_rate": 4.5860743599951186e-07,
|
3050 |
+
"loss": 0.1492,
|
3051 |
+
"step": 507
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 0.92,
|
3055 |
+
"learning_rate": 4.4093121340347824e-07,
|
3056 |
+
"loss": 0.1143,
|
3057 |
+
"step": 508
|
3058 |
+
},
|
3059 |
+
{
|
3060 |
+
"epoch": 0.92,
|
3061 |
+
"learning_rate": 4.235946886711018e-07,
|
3062 |
+
"loss": 0.1318,
|
3063 |
+
"step": 509
|
3064 |
+
},
|
3065 |
+
{
|
3066 |
+
"epoch": 0.92,
|
3067 |
+
"learning_rate": 4.0659847788544926e-07,
|
3068 |
+
"loss": 0.0485,
|
3069 |
+
"step": 510
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 0.92,
|
3073 |
+
"learning_rate": 3.899431850359503e-07,
|
3074 |
+
"loss": 0.0155,
|
3075 |
+
"step": 511
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.92,
|
3079 |
+
"learning_rate": 3.736294019969311e-07,
|
3080 |
+
"loss": 0.0895,
|
3081 |
+
"step": 512
|
3082 |
+
},
|
3083 |
+
{
|
3084 |
+
"epoch": 0.92,
|
3085 |
+
"learning_rate": 3.5765770850658244e-07,
|
3086 |
+
"loss": 0.0913,
|
3087 |
+
"step": 513
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 0.93,
|
3091 |
+
"learning_rate": 3.420286721463562e-07,
|
3092 |
+
"loss": 0.0394,
|
3093 |
+
"step": 514
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 0.93,
|
3097 |
+
"learning_rate": 3.2674284832080127e-07,
|
3098 |
+
"loss": 0.0125,
|
3099 |
+
"step": 515
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 0.93,
|
3103 |
+
"learning_rate": 3.118007802378198e-07,
|
3104 |
+
"loss": 0.082,
|
3105 |
+
"step": 516
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 0.93,
|
3109 |
+
"learning_rate": 2.972029988893621e-07,
|
3110 |
+
"loss": 0.2907,
|
3111 |
+
"step": 517
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 0.93,
|
3115 |
+
"learning_rate": 2.8295002303256546e-07,
|
3116 |
+
"loss": 0.0428,
|
3117 |
+
"step": 518
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.94,
|
3121 |
+
"learning_rate": 2.6904235917131094e-07,
|
3122 |
+
"loss": 0.1136,
|
3123 |
+
"step": 519
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 0.94,
|
3127 |
+
"learning_rate": 2.554805015382289e-07,
|
3128 |
+
"loss": 0.2987,
|
3129 |
+
"step": 520
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 0.94,
|
3133 |
+
"learning_rate": 2.422649320771331e-07,
|
3134 |
+
"loss": 0.1616,
|
3135 |
+
"step": 521
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 0.94,
|
3139 |
+
"learning_rate": 2.293961204258932e-07,
|
3140 |
+
"loss": 0.1623,
|
3141 |
+
"step": 522
|
3142 |
+
},
|
3143 |
+
{
|
3144 |
+
"epoch": 0.94,
|
3145 |
+
"learning_rate": 2.1687452389974829e-07,
|
3146 |
+
"loss": 0.0428,
|
3147 |
+
"step": 523
|
3148 |
+
},
|
3149 |
+
{
|
3150 |
+
"epoch": 0.94,
|
3151 |
+
"learning_rate": 2.0470058747505516e-07,
|
3152 |
+
"loss": 0.0309,
|
3153 |
+
"step": 524
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 0.95,
|
3157 |
+
"learning_rate": 1.9287474377347238e-07,
|
3158 |
+
"loss": 0.0533,
|
3159 |
+
"step": 525
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.95,
|
3163 |
+
"learning_rate": 1.8139741304658566e-07,
|
3164 |
+
"loss": 0.0565,
|
3165 |
+
"step": 526
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 0.95,
|
3169 |
+
"learning_rate": 1.7026900316098217e-07,
|
3170 |
+
"loss": 0.0545,
|
3171 |
+
"step": 527
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 0.95,
|
3175 |
+
"learning_rate": 1.5948990958374543e-07,
|
3176 |
+
"loss": 0.1014,
|
3177 |
+
"step": 528
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 0.95,
|
3181 |
+
"learning_rate": 1.490605153684066e-07,
|
3182 |
+
"loss": 0.2859,
|
3183 |
+
"step": 529
|
3184 |
+
},
|
3185 |
+
{
|
3186 |
+
"epoch": 0.95,
|
3187 |
+
"learning_rate": 1.3898119114133192e-07,
|
3188 |
+
"loss": 0.2631,
|
3189 |
+
"step": 530
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 0.96,
|
3193 |
+
"learning_rate": 1.292522950885533e-07,
|
3194 |
+
"loss": 0.1341,
|
3195 |
+
"step": 531
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 0.96,
|
3199 |
+
"learning_rate": 1.1987417294303748e-07,
|
3200 |
+
"loss": 0.1001,
|
3201 |
+
"step": 532
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.96,
|
3205 |
+
"learning_rate": 1.1084715797239798e-07,
|
3206 |
+
"loss": 0.2334,
|
3207 |
+
"step": 533
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 0.96,
|
3211 |
+
"learning_rate": 1.0217157096705676e-07,
|
3212 |
+
"loss": 0.0793,
|
3213 |
+
"step": 534
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 0.96,
|
3217 |
+
"learning_rate": 9.384772022884015e-08,
|
3218 |
+
"loss": 0.0426,
|
3219 |
+
"step": 535
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 0.97,
|
3223 |
+
"learning_rate": 8.587590156002635e-08,
|
3224 |
+
"loss": 0.0174,
|
3225 |
+
"step": 536
|
3226 |
+
},
|
3227 |
+
{
|
3228 |
+
"epoch": 0.97,
|
3229 |
+
"learning_rate": 7.825639825282949e-08,
|
3230 |
+
"loss": 0.1224,
|
3231 |
+
"step": 537
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 0.97,
|
3235 |
+
"learning_rate": 7.098948107933656e-08,
|
3236 |
+
"loss": 0.0296,
|
3237 |
+
"step": 538
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 0.97,
|
3241 |
+
"learning_rate": 6.407540828188175e-08,
|
3242 |
+
"loss": 0.0831,
|
3243 |
+
"step": 539
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.97,
|
3247 |
+
"learning_rate": 5.7514425563870436e-08,
|
3248 |
+
"loss": 0.0264,
|
3249 |
+
"step": 540
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 0.97,
|
3253 |
+
"learning_rate": 5.1306766081048456e-08,
|
3254 |
+
"loss": 0.0982,
|
3255 |
+
"step": 541
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 0.98,
|
3259 |
+
"learning_rate": 4.545265043321645e-08,
|
3260 |
+
"loss": 0.0393,
|
3261 |
+
"step": 542
|
3262 |
+
},
|
3263 |
+
{
|
3264 |
+
"epoch": 0.98,
|
3265 |
+
"learning_rate": 3.9952286656389506e-08,
|
3266 |
+
"loss": 0.0695,
|
3267 |
+
"step": 543
|
3268 |
+
},
|
3269 |
+
{
|
3270 |
+
"epoch": 0.98,
|
3271 |
+
"learning_rate": 3.480587021540527e-08,
|
3272 |
+
"loss": 0.1458,
|
3273 |
+
"step": 544
|
3274 |
+
},
|
3275 |
+
{
|
3276 |
+
"epoch": 0.98,
|
3277 |
+
"learning_rate": 3.001358399697618e-08,
|
3278 |
+
"loss": 0.0065,
|
3279 |
+
"step": 545
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 0.98,
|
3283 |
+
"learning_rate": 2.557559830319245e-08,
|
3284 |
+
"loss": 0.1492,
|
3285 |
+
"step": 546
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.99,
|
3289 |
+
"learning_rate": 2.1492070845468005e-08,
|
3290 |
+
"loss": 0.094,
|
3291 |
+
"step": 547
|
3292 |
+
},
|
3293 |
+
{
|
3294 |
+
"epoch": 0.99,
|
3295 |
+
"learning_rate": 1.7763146738938307e-08,
|
3296 |
+
"loss": 0.2497,
|
3297 |
+
"step": 548
|
3298 |
+
},
|
3299 |
+
{
|
3300 |
+
"epoch": 0.99,
|
3301 |
+
"learning_rate": 1.4388958497300043e-08,
|
3302 |
+
"loss": 0.0833,
|
3303 |
+
"step": 549
|
3304 |
+
},
|
3305 |
+
{
|
3306 |
+
"epoch": 0.99,
|
3307 |
+
"learning_rate": 1.1369626028104874e-08,
|
3308 |
+
"loss": 0.0528,
|
3309 |
+
"step": 550
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 0.99,
|
3313 |
+
"learning_rate": 8.705256628499525e-09,
|
3314 |
+
"loss": 0.0411,
|
3315 |
+
"step": 551
|
3316 |
+
},
|
3317 |
+
{
|
3318 |
+
"epoch": 0.99,
|
3319 |
+
"learning_rate": 6.39594498140883e-09,
|
3320 |
+
"loss": 0.0253,
|
3321 |
+
"step": 552
|
3322 |
+
},
|
3323 |
+
{
|
3324 |
+
"epoch": 1.0,
|
3325 |
+
"learning_rate": 4.4417731521717576e-09,
|
3326 |
+
"loss": 0.2015,
|
3327 |
+
"step": 553
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 1.0,
|
3331 |
+
"learning_rate": 2.842810585627076e-09,
|
3332 |
+
"loss": 0.0077,
|
3333 |
+
"step": 554
|
3334 |
+
},
|
3335 |
+
{
|
3336 |
+
"epoch": 1.0,
|
3337 |
+
"learning_rate": 1.5991141036475478e-09,
|
3338 |
+
"loss": 0.1521,
|
3339 |
+
"step": 555
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 1.0,
|
3343 |
+
"step": 555,
|
3344 |
+
"total_flos": 1196575985664.0,
|
3345 |
+
"train_loss": 0.11872713004180172,
|
3346 |
+
"train_runtime": 4113.0695,
|
3347 |
+
"train_samples_per_second": 1.347,
|
3348 |
+
"train_steps_per_second": 0.135
|
3349 |
+
}
|
3350 |
+
],
|
3351 |
+
"logging_steps": 1.0,
|
3352 |
+
"max_steps": 555,
|
3353 |
+
"num_input_tokens_seen": 0,
|
3354 |
+
"num_train_epochs": 1,
|
3355 |
+
"save_steps": 500,
|
3356 |
+
"total_flos": 1196575985664.0,
|
3357 |
+
"train_batch_size": 10,
|
3358 |
+
"trial_name": null,
|
3359 |
+
"trial_params": null
|
3360 |
+
}
|
CheckGuard Models/wholeimage/bank_no/finetune_lora_llava_mistral.sh
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Use first parameter as GPU IDs, default to "0,1,2,3" if not provided
|
3 |
+
GPU_IDS=${1:-0,1,2,3}
|
4 |
+
|
5 |
+
|
6 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29602\
|
7 |
+
llava/train/train_mem.py \
|
8 |
+
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
|
9 |
+
--deepspeed ./scripts/zero3.json \
|
10 |
+
--model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
|
11 |
+
--version mistral_instruct \
|
12 |
+
--data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/bank_no/bank_no_dataset.json \
|
13 |
+
--image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
|
14 |
+
--vision_tower openai/clip-vit-large-patch14-336 \
|
15 |
+
--mm_projector_type mlp2x_gelu \
|
16 |
+
--mm_vision_select_layer -2 \
|
17 |
+
--mm_use_im_start_end False \
|
18 |
+
--mm_use_im_patch_token False \
|
19 |
+
--mm_patch_merge_type spatial_unpad \
|
20 |
+
--image_aspect_ratio anyres \
|
21 |
+
--group_by_modality_length False \
|
22 |
+
--bf16 False \
|
23 |
+
--fp16 True \
|
24 |
+
--output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model \
|
25 |
+
--num_train_epochs 1 \
|
26 |
+
--per_device_train_batch_size 10 \
|
27 |
+
--per_device_eval_batch_size 1 \
|
28 |
+
--gradient_accumulation_steps 1 \
|
29 |
+
--evaluation_strategy "no" \
|
30 |
+
--save_strategy "steps" \
|
31 |
+
--save_steps 500 \
|
32 |
+
--save_total_limit 5 \
|
33 |
+
--learning_rate 2e-5 \
|
34 |
+
--weight_decay 0. \
|
35 |
+
--warmup_ratio 0.05 \
|
36 |
+
--lr_scheduler_type "cosine" \
|
37 |
+
--logging_steps 1 \
|
38 |
+
--tf32 True \
|
39 |
+
--model_max_length 4096 \
|
40 |
+
--gradient_checkpointing True \
|
41 |
+
--dataloader_num_workers 4 \
|
42 |
+
--lazy_preprocess True \
|
43 |
+
--report_to wandb \
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: liuhaotian/llava-v1.6-mistral-7b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj",
|
25 |
+
"up_proj",
|
26 |
+
"k_proj",
|
27 |
+
"o_proj",
|
28 |
+
"gate_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eea7f9e47bb7d2f074c81e49ccf9648c1394c7fbb7e851b9ac64e47efa2c03b
|
3 |
+
size 708924928
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: liuhaotian/llava-v1.6-mistral-7b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"q_proj",
|
25 |
+
"up_proj",
|
26 |
+
"k_proj",
|
27 |
+
"o_proj",
|
28 |
+
"gate_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:645c293e131efb974f8c218e7d69c93bf50c753554c806d1cf561baa77311585
|
3 |
+
size 1417762896
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3183212032ce3f53bf011c0ea2d72e73d90e4ae83d758f3cb2661945c405d2e
|
3 |
+
size 632242
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67835d032628ab68661627ea5db2a21c8defdf7306ff43ec6d2d034f2a3add64
|
3 |
+
size 4504787266
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step500
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1691c008dc15394c290eec92c6d96f1d3cc3096220a9fdad0f2210c4f3699fd5
|
3 |
+
size 14244
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b37e2b05185c6152f2a40fb75a789b697d3a87176492c5cbb481ba82522c2163
|
3 |
+
size 1064
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 4096,
|
37 |
+
"pad_token": "<unk>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,3021 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9242144177449169,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 7.142857142857143e-07,
|
14 |
+
"loss": 0.6789,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"learning_rate": 1.4285714285714286e-06,
|
20 |
+
"loss": 0.8481,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 2.1428571428571427e-06,
|
26 |
+
"loss": 0.663,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 2.8571428571428573e-06,
|
32 |
+
"loss": 0.679,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.01,
|
37 |
+
"learning_rate": 3.5714285714285718e-06,
|
38 |
+
"loss": 1.0166,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.01,
|
43 |
+
"learning_rate": 4.2857142857142855e-06,
|
44 |
+
"loss": 0.4693,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.01,
|
49 |
+
"learning_rate": 5e-06,
|
50 |
+
"loss": 0.4891,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"learning_rate": 5.7142857142857145e-06,
|
56 |
+
"loss": 0.5523,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.02,
|
61 |
+
"learning_rate": 6.4285714285714295e-06,
|
62 |
+
"loss": 0.2909,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.02,
|
67 |
+
"learning_rate": 7.1428571428571436e-06,
|
68 |
+
"loss": 0.2598,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.02,
|
73 |
+
"learning_rate": 7.857142857142858e-06,
|
74 |
+
"loss": 0.2532,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.02,
|
79 |
+
"learning_rate": 7.857142857142858e-06,
|
80 |
+
"loss": 0.4867,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.02,
|
85 |
+
"learning_rate": 8.571428571428571e-06,
|
86 |
+
"loss": 0.4145,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.03,
|
91 |
+
"learning_rate": 8.571428571428571e-06,
|
92 |
+
"loss": 0.3161,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.03,
|
97 |
+
"learning_rate": 9.285714285714288e-06,
|
98 |
+
"loss": 0.1836,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.03,
|
103 |
+
"learning_rate": 1e-05,
|
104 |
+
"loss": 0.3355,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.03,
|
109 |
+
"learning_rate": 1.0714285714285714e-05,
|
110 |
+
"loss": 0.2286,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.03,
|
115 |
+
"learning_rate": 1.1428571428571429e-05,
|
116 |
+
"loss": 0.3594,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.04,
|
121 |
+
"learning_rate": 1.2142857142857142e-05,
|
122 |
+
"loss": 0.2981,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.04,
|
127 |
+
"learning_rate": 1.2857142857142859e-05,
|
128 |
+
"loss": 0.3021,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.04,
|
133 |
+
"learning_rate": 1.3571428571428574e-05,
|
134 |
+
"loss": 0.3866,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.04,
|
139 |
+
"learning_rate": 1.4285714285714287e-05,
|
140 |
+
"loss": 0.2409,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.04,
|
145 |
+
"learning_rate": 1.5000000000000002e-05,
|
146 |
+
"loss": 0.1397,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.04,
|
151 |
+
"learning_rate": 1.5714285714285715e-05,
|
152 |
+
"loss": 0.1416,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.05,
|
157 |
+
"learning_rate": 1.642857142857143e-05,
|
158 |
+
"loss": 0.1838,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.05,
|
163 |
+
"learning_rate": 1.7142857142857142e-05,
|
164 |
+
"loss": 0.1505,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.05,
|
169 |
+
"learning_rate": 1.785714285714286e-05,
|
170 |
+
"loss": 0.3278,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.05,
|
175 |
+
"learning_rate": 1.8571428571428575e-05,
|
176 |
+
"loss": 0.2567,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.05,
|
181 |
+
"learning_rate": 1.928571428571429e-05,
|
182 |
+
"loss": 0.1218,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.06,
|
187 |
+
"learning_rate": 2e-05,
|
188 |
+
"loss": 0.2288,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.06,
|
193 |
+
"learning_rate": 1.9999812486015525e-05,
|
194 |
+
"loss": 0.1348,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.06,
|
199 |
+
"learning_rate": 1.9999249951094388e-05,
|
200 |
+
"loss": 0.3734,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.06,
|
205 |
+
"learning_rate": 1.999831241633323e-05,
|
206 |
+
"loss": 0.3169,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.06,
|
211 |
+
"learning_rate": 1.9996999916892222e-05,
|
212 |
+
"loss": 0.1066,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.06,
|
217 |
+
"learning_rate": 1.9995312501993765e-05,
|
218 |
+
"loss": 0.4434,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.07,
|
223 |
+
"learning_rate": 1.9993250234920638e-05,
|
224 |
+
"loss": 0.198,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.07,
|
229 |
+
"learning_rate": 1.9990813193013625e-05,
|
230 |
+
"loss": 0.115,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.07,
|
235 |
+
"learning_rate": 1.9988001467668613e-05,
|
236 |
+
"loss": 0.2676,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.07,
|
241 |
+
"learning_rate": 1.9984815164333163e-05,
|
242 |
+
"loss": 0.2201,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.07,
|
247 |
+
"learning_rate": 1.9981254402502568e-05,
|
248 |
+
"loss": 0.1945,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.08,
|
253 |
+
"learning_rate": 1.997731931571535e-05,
|
254 |
+
"loss": 0.1391,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.08,
|
259 |
+
"learning_rate": 1.9973010051548274e-05,
|
260 |
+
"loss": 0.2697,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.08,
|
265 |
+
"learning_rate": 1.9968326771610797e-05,
|
266 |
+
"loss": 0.1562,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.08,
|
271 |
+
"learning_rate": 1.9963269651539018e-05,
|
272 |
+
"loss": 0.2204,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.08,
|
277 |
+
"learning_rate": 1.9957838880989076e-05,
|
278 |
+
"loss": 0.2729,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.09,
|
283 |
+
"learning_rate": 1.9952034663630064e-05,
|
284 |
+
"loss": 0.441,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.09,
|
289 |
+
"learning_rate": 1.9952034663630064e-05,
|
290 |
+
"loss": 0.1401,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.09,
|
295 |
+
"learning_rate": 1.9945857217136365e-05,
|
296 |
+
"loss": 0.3727,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.09,
|
301 |
+
"learning_rate": 1.9939306773179498e-05,
|
302 |
+
"loss": 0.3269,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.09,
|
307 |
+
"learning_rate": 1.9932383577419432e-05,
|
308 |
+
"loss": 0.0801,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.09,
|
313 |
+
"learning_rate": 1.9925087889495374e-05,
|
314 |
+
"loss": 0.2772,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.1,
|
319 |
+
"learning_rate": 1.9917419983016025e-05,
|
320 |
+
"loss": 0.2253,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.1,
|
325 |
+
"learning_rate": 1.9909380145549325e-05,
|
326 |
+
"loss": 0.2318,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.1,
|
331 |
+
"learning_rate": 1.9900968678611664e-05,
|
332 |
+
"loss": 0.1809,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.1,
|
337 |
+
"learning_rate": 1.989218589765658e-05,
|
338 |
+
"loss": 0.1155,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1,
|
343 |
+
"learning_rate": 1.9883032132062926e-05,
|
344 |
+
"loss": 0.2356,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.11,
|
349 |
+
"learning_rate": 1.9873507725122505e-05,
|
350 |
+
"loss": 0.1194,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.11,
|
355 |
+
"learning_rate": 1.9863613034027224e-05,
|
356 |
+
"loss": 0.3272,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.11,
|
361 |
+
"learning_rate": 1.985334842985567e-05,
|
362 |
+
"loss": 0.183,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.11,
|
367 |
+
"learning_rate": 1.9842714297559212e-05,
|
368 |
+
"loss": 0.1217,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.11,
|
373 |
+
"learning_rate": 1.9831711035947552e-05,
|
374 |
+
"loss": 0.1388,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.11,
|
379 |
+
"learning_rate": 1.9820339057673773e-05,
|
380 |
+
"loss": 0.2112,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.12,
|
385 |
+
"learning_rate": 1.9808598789218866e-05,
|
386 |
+
"loss": 0.0917,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.12,
|
391 |
+
"learning_rate": 1.979649067087574e-05,
|
392 |
+
"loss": 0.1585,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.12,
|
397 |
+
"learning_rate": 1.9784015156732693e-05,
|
398 |
+
"loss": 0.1446,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.12,
|
403 |
+
"learning_rate": 1.97711727146564e-05,
|
404 |
+
"loss": 0.3511,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.12,
|
409 |
+
"learning_rate": 1.9757963826274357e-05,
|
410 |
+
"loss": 0.1019,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.13,
|
415 |
+
"learning_rate": 1.9744388986956824e-05,
|
416 |
+
"loss": 0.1165,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.13,
|
421 |
+
"learning_rate": 1.973044870579824e-05,
|
422 |
+
"loss": 0.2189,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.13,
|
427 |
+
"learning_rate": 1.971614350559814e-05,
|
428 |
+
"loss": 0.1254,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.13,
|
433 |
+
"learning_rate": 1.970147392284154e-05,
|
434 |
+
"loss": 0.0627,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.13,
|
439 |
+
"learning_rate": 1.9686440507678827e-05,
|
440 |
+
"loss": 0.0952,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.13,
|
445 |
+
"learning_rate": 1.967104382390511e-05,
|
446 |
+
"loss": 0.1867,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.14,
|
451 |
+
"learning_rate": 1.9655284448939094e-05,
|
452 |
+
"loss": 0.2003,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.14,
|
457 |
+
"learning_rate": 1.9639162973801426e-05,
|
458 |
+
"loss": 0.1188,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.14,
|
463 |
+
"learning_rate": 1.9622680003092503e-05,
|
464 |
+
"loss": 0.1111,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.14,
|
469 |
+
"learning_rate": 1.960583615496984e-05,
|
470 |
+
"loss": 0.1203,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.14,
|
475 |
+
"learning_rate": 1.9588632061124837e-05,
|
476 |
+
"loss": 0.1599,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.15,
|
481 |
+
"learning_rate": 1.9571068366759143e-05,
|
482 |
+
"loss": 0.209,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.15,
|
487 |
+
"learning_rate": 1.9553145730560415e-05,
|
488 |
+
"loss": 0.2183,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.15,
|
493 |
+
"learning_rate": 1.953486482467764e-05,
|
494 |
+
"loss": 0.1351,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.15,
|
499 |
+
"learning_rate": 1.951622633469592e-05,
|
500 |
+
"loss": 0.128,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.15,
|
505 |
+
"learning_rate": 1.9497230959610757e-05,
|
506 |
+
"loss": 0.2241,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.16,
|
511 |
+
"learning_rate": 1.9477879411801843e-05,
|
512 |
+
"loss": 0.0991,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.16,
|
517 |
+
"learning_rate": 1.9458172417006347e-05,
|
518 |
+
"loss": 0.1165,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.16,
|
523 |
+
"learning_rate": 1.9438110714291697e-05,
|
524 |
+
"loss": 0.0792,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.16,
|
529 |
+
"learning_rate": 1.9417695056027847e-05,
|
530 |
+
"loss": 0.121,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.16,
|
535 |
+
"learning_rate": 1.9396926207859085e-05,
|
536 |
+
"loss": 0.2727,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.16,
|
541 |
+
"learning_rate": 1.9375804948675308e-05,
|
542 |
+
"loss": 0.1947,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.17,
|
547 |
+
"learning_rate": 1.935433207058281e-05,
|
548 |
+
"loss": 0.2155,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.17,
|
553 |
+
"learning_rate": 1.933250837887457e-05,
|
554 |
+
"loss": 0.0525,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.17,
|
559 |
+
"learning_rate": 1.9310334692000077e-05,
|
560 |
+
"loss": 0.2401,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.17,
|
565 |
+
"learning_rate": 1.9287811841534598e-05,
|
566 |
+
"loss": 0.0743,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.17,
|
571 |
+
"learning_rate": 1.9264940672148018e-05,
|
572 |
+
"loss": 0.1659,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.18,
|
577 |
+
"learning_rate": 1.9241722041573166e-05,
|
578 |
+
"loss": 0.1184,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.18,
|
583 |
+
"learning_rate": 1.9218156820573618e-05,
|
584 |
+
"loss": 0.1207,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.18,
|
589 |
+
"learning_rate": 1.9194245892911077e-05,
|
590 |
+
"loss": 0.1292,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.18,
|
595 |
+
"learning_rate": 1.916999015531221e-05,
|
596 |
+
"loss": 0.2059,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.18,
|
601 |
+
"learning_rate": 1.9145390517435013e-05,
|
602 |
+
"loss": 0.1682,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.18,
|
607 |
+
"learning_rate": 1.9120447901834708e-05,
|
608 |
+
"loss": 0.1403,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.19,
|
613 |
+
"learning_rate": 1.9095163243929143e-05,
|
614 |
+
"loss": 0.1752,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.19,
|
619 |
+
"learning_rate": 1.906953749196371e-05,
|
620 |
+
"loss": 0.1616,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.19,
|
625 |
+
"learning_rate": 1.9043571606975776e-05,
|
626 |
+
"loss": 0.1127,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.19,
|
631 |
+
"learning_rate": 1.901726656275866e-05,
|
632 |
+
"loss": 0.2236,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.19,
|
637 |
+
"learning_rate": 1.8990623345825084e-05,
|
638 |
+
"loss": 0.2308,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.2,
|
643 |
+
"learning_rate": 1.8963642955370203e-05,
|
644 |
+
"loss": 0.1739,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.2,
|
649 |
+
"learning_rate": 1.8936326403234125e-05,
|
650 |
+
"loss": 0.1762,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.2,
|
655 |
+
"learning_rate": 1.890867471386395e-05,
|
656 |
+
"loss": 0.1457,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.2,
|
661 |
+
"learning_rate": 1.888068892427538e-05,
|
662 |
+
"loss": 0.2768,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.2,
|
667 |
+
"learning_rate": 1.8852370084013783e-05,
|
668 |
+
"loss": 0.1389,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.21,
|
673 |
+
"learning_rate": 1.882371925511488e-05,
|
674 |
+
"loss": 0.2747,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.21,
|
679 |
+
"learning_rate": 1.879473751206489e-05,
|
680 |
+
"loss": 0.0542,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.21,
|
685 |
+
"learning_rate": 1.8765425941760237e-05,
|
686 |
+
"loss": 0.1414,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.21,
|
691 |
+
"learning_rate": 1.8735785643466786e-05,
|
692 |
+
"loss": 0.2482,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.21,
|
697 |
+
"learning_rate": 1.8705817728778626e-05,
|
698 |
+
"loss": 0.1602,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.21,
|
703 |
+
"learning_rate": 1.867552332157637e-05,
|
704 |
+
"loss": 0.1342,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.22,
|
709 |
+
"learning_rate": 1.8644903557985027e-05,
|
710 |
+
"loss": 0.077,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.22,
|
715 |
+
"learning_rate": 1.8613959586331364e-05,
|
716 |
+
"loss": 0.0818,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.22,
|
721 |
+
"learning_rate": 1.8582692567100866e-05,
|
722 |
+
"loss": 0.1443,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.22,
|
727 |
+
"learning_rate": 1.855110367289421e-05,
|
728 |
+
"loss": 0.1148,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.22,
|
733 |
+
"learning_rate": 1.851919408838327e-05,
|
734 |
+
"loss": 0.1661,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.23,
|
739 |
+
"learning_rate": 1.8486965010266726e-05,
|
740 |
+
"loss": 0.1676,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.23,
|
745 |
+
"learning_rate": 1.845441764722514e-05,
|
746 |
+
"loss": 0.1288,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.23,
|
751 |
+
"learning_rate": 1.842155321987566e-05,
|
752 |
+
"loss": 0.0725,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.23,
|
757 |
+
"learning_rate": 1.8388372960726228e-05,
|
758 |
+
"loss": 0.1258,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.23,
|
763 |
+
"learning_rate": 1.8354878114129368e-05,
|
764 |
+
"loss": 0.068,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.23,
|
769 |
+
"learning_rate": 1.8321069936235503e-05,
|
770 |
+
"loss": 0.1698,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.24,
|
775 |
+
"learning_rate": 1.8286949694945864e-05,
|
776 |
+
"loss": 0.2038,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.24,
|
781 |
+
"learning_rate": 1.8252518669864935e-05,
|
782 |
+
"loss": 0.0274,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.24,
|
787 |
+
"learning_rate": 1.821777815225245e-05,
|
788 |
+
"loss": 0.0564,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.24,
|
793 |
+
"learning_rate": 1.8182729444974993e-05,
|
794 |
+
"loss": 0.1182,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.24,
|
799 |
+
"learning_rate": 1.8147373862457107e-05,
|
800 |
+
"loss": 0.3175,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.25,
|
805 |
+
"learning_rate": 1.8111712730632024e-05,
|
806 |
+
"loss": 0.1017,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.25,
|
811 |
+
"learning_rate": 1.807574738689193e-05,
|
812 |
+
"loss": 0.3348,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.25,
|
817 |
+
"learning_rate": 1.8039479180037803e-05,
|
818 |
+
"loss": 0.3129,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.25,
|
823 |
+
"learning_rate": 1.800290947022884e-05,
|
824 |
+
"loss": 0.1095,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.25,
|
829 |
+
"learning_rate": 1.7966039628931447e-05,
|
830 |
+
"loss": 0.1922,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.26,
|
835 |
+
"learning_rate": 1.7928871038867785e-05,
|
836 |
+
"loss": 0.1022,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.26,
|
841 |
+
"learning_rate": 1.789140509396394e-05,
|
842 |
+
"loss": 0.2318,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.26,
|
847 |
+
"learning_rate": 1.7853643199297632e-05,
|
848 |
+
"loss": 0.2374,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.26,
|
853 |
+
"learning_rate": 1.7815586771045535e-05,
|
854 |
+
"loss": 0.1194,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.26,
|
859 |
+
"learning_rate": 1.777723723643014e-05,
|
860 |
+
"loss": 0.1914,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.26,
|
865 |
+
"learning_rate": 1.773859603366626e-05,
|
866 |
+
"loss": 0.0431,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.27,
|
871 |
+
"learning_rate": 1.769966461190707e-05,
|
872 |
+
"loss": 0.081,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.27,
|
877 |
+
"learning_rate": 1.766044443118978e-05,
|
878 |
+
"loss": 0.2162,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.27,
|
883 |
+
"learning_rate": 1.762093696238086e-05,
|
884 |
+
"loss": 0.1151,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.27,
|
889 |
+
"learning_rate": 1.7581143687120877e-05,
|
890 |
+
"loss": 0.184,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.27,
|
895 |
+
"learning_rate": 1.7541066097768965e-05,
|
896 |
+
"loss": 0.1963,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.28,
|
901 |
+
"learning_rate": 1.750070569734681e-05,
|
902 |
+
"loss": 0.1318,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.28,
|
907 |
+
"learning_rate": 1.7460063999482314e-05,
|
908 |
+
"loss": 0.1163,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.28,
|
913 |
+
"learning_rate": 1.7419142528352815e-05,
|
914 |
+
"loss": 0.1013,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.28,
|
919 |
+
"learning_rate": 1.737794281862794e-05,
|
920 |
+
"loss": 0.0957,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.28,
|
925 |
+
"learning_rate": 1.7336466415412028e-05,
|
926 |
+
"loss": 0.2023,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.28,
|
931 |
+
"learning_rate": 1.729471487418621e-05,
|
932 |
+
"loss": 0.1398,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.29,
|
937 |
+
"learning_rate": 1.7252689760750053e-05,
|
938 |
+
"loss": 0.1238,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.29,
|
943 |
+
"learning_rate": 1.721039265116285e-05,
|
944 |
+
"loss": 0.2201,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.29,
|
949 |
+
"learning_rate": 1.7167825131684516e-05,
|
950 |
+
"loss": 0.0698,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.29,
|
955 |
+
"learning_rate": 1.7124988798716084e-05,
|
956 |
+
"loss": 0.0312,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.29,
|
961 |
+
"learning_rate": 1.7081885258739846e-05,
|
962 |
+
"loss": 0.1443,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.3,
|
967 |
+
"learning_rate": 1.7038516128259118e-05,
|
968 |
+
"loss": 0.1349,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.3,
|
973 |
+
"learning_rate": 1.6994883033737582e-05,
|
974 |
+
"loss": 0.0751,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.3,
|
979 |
+
"learning_rate": 1.695098761153832e-05,
|
980 |
+
"loss": 0.0543,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.3,
|
985 |
+
"learning_rate": 1.6906831507862446e-05,
|
986 |
+
"loss": 0.0533,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.3,
|
991 |
+
"learning_rate": 1.686241637868734e-05,
|
992 |
+
"loss": 0.1328,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.3,
|
997 |
+
"learning_rate": 1.6817743889704564e-05,
|
998 |
+
"loss": 0.3057,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.31,
|
1003 |
+
"learning_rate": 1.6772815716257414e-05,
|
1004 |
+
"loss": 0.1642,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.31,
|
1009 |
+
"learning_rate": 1.672763354327804e-05,
|
1010 |
+
"loss": 0.1479,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.31,
|
1015 |
+
"learning_rate": 1.6682199065224307e-05,
|
1016 |
+
"loss": 0.1163,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.31,
|
1021 |
+
"learning_rate": 1.6636513986016215e-05,
|
1022 |
+
"loss": 0.0395,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.31,
|
1027 |
+
"learning_rate": 1.6590580018972012e-05,
|
1028 |
+
"loss": 0.0456,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.32,
|
1033 |
+
"learning_rate": 1.6544398886743934e-05,
|
1034 |
+
"loss": 0.2018,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.32,
|
1039 |
+
"learning_rate": 1.64979723212536e-05,
|
1040 |
+
"loss": 0.1655,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.32,
|
1045 |
+
"learning_rate": 1.6451302063627067e-05,
|
1046 |
+
"loss": 0.1805,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.32,
|
1051 |
+
"learning_rate": 1.6404389864129533e-05,
|
1052 |
+
"loss": 0.2445,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.32,
|
1057 |
+
"learning_rate": 1.6357237482099682e-05,
|
1058 |
+
"loss": 0.134,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.33,
|
1063 |
+
"learning_rate": 1.6309846685883726e-05,
|
1064 |
+
"loss": 0.0976,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.33,
|
1069 |
+
"learning_rate": 1.6262219252769065e-05,
|
1070 |
+
"loss": 0.0984,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.33,
|
1075 |
+
"learning_rate": 1.621435696891765e-05,
|
1076 |
+
"loss": 0.0495,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.33,
|
1081 |
+
"learning_rate": 1.6166261629298996e-05,
|
1082 |
+
"loss": 0.1005,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.33,
|
1087 |
+
"learning_rate": 1.6117935037622848e-05,
|
1088 |
+
"loss": 0.1399,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.33,
|
1093 |
+
"learning_rate": 1.606937900627157e-05,
|
1094 |
+
"loss": 0.2105,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.34,
|
1099 |
+
"learning_rate": 1.6020595356232137e-05,
|
1100 |
+
"loss": 0.142,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.34,
|
1105 |
+
"learning_rate": 1.5971585917027864e-05,
|
1106 |
+
"loss": 0.0791,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.34,
|
1111 |
+
"learning_rate": 1.5922352526649803e-05,
|
1112 |
+
"loss": 0.2,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.34,
|
1117 |
+
"learning_rate": 1.587289703148779e-05,
|
1118 |
+
"loss": 0.1317,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.34,
|
1123 |
+
"learning_rate": 1.5823221286261217e-05,
|
1124 |
+
"loss": 0.1656,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.35,
|
1129 |
+
"learning_rate": 1.5773327153949465e-05,
|
1130 |
+
"loss": 0.3358,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.35,
|
1135 |
+
"learning_rate": 1.572321650572205e-05,
|
1136 |
+
"loss": 0.2216,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.35,
|
1141 |
+
"learning_rate": 1.567289122086843e-05,
|
1142 |
+
"loss": 0.0937,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.35,
|
1147 |
+
"learning_rate": 1.5622353186727542e-05,
|
1148 |
+
"loss": 0.0995,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.35,
|
1153 |
+
"learning_rate": 1.557160429861702e-05,
|
1154 |
+
"loss": 0.2324,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.35,
|
1159 |
+
"learning_rate": 1.5520646459762102e-05,
|
1160 |
+
"loss": 0.2847,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.36,
|
1165 |
+
"learning_rate": 1.5469481581224274e-05,
|
1166 |
+
"loss": 0.1242,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.36,
|
1171 |
+
"learning_rate": 1.5418111581829575e-05,
|
1172 |
+
"loss": 0.1771,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.36,
|
1177 |
+
"learning_rate": 1.536653838809667e-05,
|
1178 |
+
"loss": 0.2115,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.36,
|
1183 |
+
"learning_rate": 1.531476393416456e-05,
|
1184 |
+
"loss": 0.074,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.36,
|
1189 |
+
"learning_rate": 1.5262790161720082e-05,
|
1190 |
+
"loss": 0.0893,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.37,
|
1195 |
+
"learning_rate": 1.5210619019925066e-05,
|
1196 |
+
"loss": 0.0644,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.37,
|
1201 |
+
"learning_rate": 1.5158252465343242e-05,
|
1202 |
+
"loss": 0.2146,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.37,
|
1207 |
+
"learning_rate": 1.5105692461866874e-05,
|
1208 |
+
"loss": 0.2579,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.37,
|
1213 |
+
"learning_rate": 1.50529409806431e-05,
|
1214 |
+
"loss": 0.0806,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.37,
|
1219 |
+
"learning_rate": 1.5000000000000002e-05,
|
1220 |
+
"loss": 0.0806,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.38,
|
1225 |
+
"learning_rate": 1.4946871505372426e-05,
|
1226 |
+
"loss": 0.132,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.38,
|
1231 |
+
"learning_rate": 1.4893557489227518e-05,
|
1232 |
+
"loss": 0.1438,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.38,
|
1237 |
+
"learning_rate": 1.4840059950989992e-05,
|
1238 |
+
"loss": 0.1703,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.38,
|
1243 |
+
"learning_rate": 1.478638089696716e-05,
|
1244 |
+
"loss": 0.0903,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.38,
|
1249 |
+
"learning_rate": 1.4732522340273686e-05,
|
1250 |
+
"loss": 0.1515,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.38,
|
1255 |
+
"learning_rate": 1.467848630075608e-05,
|
1256 |
+
"loss": 0.2156,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.39,
|
1261 |
+
"learning_rate": 1.4624274804916958e-05,
|
1262 |
+
"loss": 0.0783,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.39,
|
1267 |
+
"learning_rate": 1.456988988583904e-05,
|
1268 |
+
"loss": 0.1432,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.39,
|
1273 |
+
"learning_rate": 1.4515333583108896e-05,
|
1274 |
+
"loss": 0.1716,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.39,
|
1279 |
+
"learning_rate": 1.4460607942740468e-05,
|
1280 |
+
"loss": 0.2328,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.39,
|
1285 |
+
"learning_rate": 1.4405715017098333e-05,
|
1286 |
+
"loss": 0.1317,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.4,
|
1291 |
+
"learning_rate": 1.4350656864820733e-05,
|
1292 |
+
"loss": 0.097,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.4,
|
1297 |
+
"learning_rate": 1.4295435550742372e-05,
|
1298 |
+
"loss": 0.1547,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.4,
|
1303 |
+
"learning_rate": 1.4240053145816968e-05,
|
1304 |
+
"loss": 0.0737,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.4,
|
1309 |
+
"learning_rate": 1.4184511727039612e-05,
|
1310 |
+
"loss": 0.0926,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.4,
|
1315 |
+
"learning_rate": 1.4128813377368851e-05,
|
1316 |
+
"loss": 0.0824,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.4,
|
1321 |
+
"learning_rate": 1.4072960185648576e-05,
|
1322 |
+
"loss": 0.1236,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.41,
|
1327 |
+
"learning_rate": 1.4016954246529697e-05,
|
1328 |
+
"loss": 0.157,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.41,
|
1333 |
+
"learning_rate": 1.396079766039157e-05,
|
1334 |
+
"loss": 0.1241,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.41,
|
1339 |
+
"learning_rate": 1.3904492533263243e-05,
|
1340 |
+
"loss": 0.1243,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.41,
|
1345 |
+
"learning_rate": 1.3848040976744459e-05,
|
1346 |
+
"loss": 0.1429,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.41,
|
1351 |
+
"learning_rate": 1.3791445107926478e-05,
|
1352 |
+
"loss": 0.0321,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.42,
|
1357 |
+
"learning_rate": 1.3734707049312674e-05,
|
1358 |
+
"loss": 0.0398,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.42,
|
1363 |
+
"learning_rate": 1.3677828928738934e-05,
|
1364 |
+
"loss": 0.2625,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.42,
|
1369 |
+
"learning_rate": 1.3620812879293864e-05,
|
1370 |
+
"loss": 0.0926,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.42,
|
1375 |
+
"learning_rate": 1.3563661039238785e-05,
|
1376 |
+
"loss": 0.06,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.42,
|
1381 |
+
"learning_rate": 1.3506375551927546e-05,
|
1382 |
+
"loss": 0.2397,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.43,
|
1387 |
+
"learning_rate": 1.3448958565726144e-05,
|
1388 |
+
"loss": 0.157,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.43,
|
1393 |
+
"learning_rate": 1.3391412233932148e-05,
|
1394 |
+
"loss": 0.1105,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.43,
|
1399 |
+
"learning_rate": 1.3333738714693958e-05,
|
1400 |
+
"loss": 0.0877,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.43,
|
1405 |
+
"learning_rate": 1.3275940170929845e-05,
|
1406 |
+
"loss": 0.1821,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.43,
|
1411 |
+
"learning_rate": 1.3218018770246858e-05,
|
1412 |
+
"loss": 0.0166,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.43,
|
1417 |
+
"learning_rate": 1.3159976684859528e-05,
|
1418 |
+
"loss": 0.118,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.44,
|
1423 |
+
"learning_rate": 1.3101816091508389e-05,
|
1424 |
+
"loss": 0.2289,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.44,
|
1429 |
+
"learning_rate": 1.3043539171378362e-05,
|
1430 |
+
"loss": 0.0518,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.44,
|
1435 |
+
"learning_rate": 1.2985148110016947e-05,
|
1436 |
+
"loss": 0.1012,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.44,
|
1441 |
+
"learning_rate": 1.292664509725226e-05,
|
1442 |
+
"loss": 0.2009,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.44,
|
1447 |
+
"learning_rate": 1.2868032327110904e-05,
|
1448 |
+
"loss": 0.252,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.45,
|
1453 |
+
"learning_rate": 1.2809311997735697e-05,
|
1454 |
+
"loss": 0.2044,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.45,
|
1459 |
+
"learning_rate": 1.2750486311303218e-05,
|
1460 |
+
"loss": 0.1908,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.45,
|
1465 |
+
"learning_rate": 1.2691557473941246e-05,
|
1466 |
+
"loss": 0.3064,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.45,
|
1471 |
+
"learning_rate": 1.2632527695645993e-05,
|
1472 |
+
"loss": 0.091,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.45,
|
1477 |
+
"learning_rate": 1.257339919019925e-05,
|
1478 |
+
"loss": 0.0606,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.45,
|
1483 |
+
"learning_rate": 1.2514174175085346e-05,
|
1484 |
+
"loss": 0.147,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.46,
|
1489 |
+
"learning_rate": 1.2454854871407993e-05,
|
1490 |
+
"loss": 0.2029,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.46,
|
1495 |
+
"learning_rate": 1.239544350380699e-05,
|
1496 |
+
"loss": 0.0851,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.46,
|
1501 |
+
"learning_rate": 1.2335942300374788e-05,
|
1502 |
+
"loss": 0.0904,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.46,
|
1507 |
+
"learning_rate": 1.2276353492572937e-05,
|
1508 |
+
"loss": 0.0721,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.46,
|
1513 |
+
"learning_rate": 1.2216679315148388e-05,
|
1514 |
+
"loss": 0.1488,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.47,
|
1519 |
+
"learning_rate": 1.2156922006049703e-05,
|
1520 |
+
"loss": 0.1927,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.47,
|
1525 |
+
"learning_rate": 1.2097083806343104e-05,
|
1526 |
+
"loss": 0.029,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.47,
|
1531 |
+
"learning_rate": 1.2037166960128443e-05,
|
1532 |
+
"loss": 0.0301,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.47,
|
1537 |
+
"learning_rate": 1.1977173714455034e-05,
|
1538 |
+
"loss": 0.1231,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.47,
|
1543 |
+
"learning_rate": 1.1917106319237386e-05,
|
1544 |
+
"loss": 0.0348,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.48,
|
1549 |
+
"learning_rate": 1.1856967027170818e-05,
|
1550 |
+
"loss": 0.0869,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.48,
|
1555 |
+
"learning_rate": 1.1796758093646989e-05,
|
1556 |
+
"loss": 0.1164,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.48,
|
1561 |
+
"learning_rate": 1.1736481776669307e-05,
|
1562 |
+
"loss": 0.0388,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.48,
|
1567 |
+
"learning_rate": 1.1676140336768236e-05,
|
1568 |
+
"loss": 0.0433,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.48,
|
1573 |
+
"learning_rate": 1.161573603691655e-05,
|
1574 |
+
"loss": 0.1996,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.48,
|
1579 |
+
"learning_rate": 1.1555271142444433e-05,
|
1580 |
+
"loss": 0.2182,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.49,
|
1585 |
+
"learning_rate": 1.1494747920954545e-05,
|
1586 |
+
"loss": 0.0509,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.49,
|
1591 |
+
"learning_rate": 1.1434168642236964e-05,
|
1592 |
+
"loss": 0.1078,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.49,
|
1597 |
+
"learning_rate": 1.1373535578184083e-05,
|
1598 |
+
"loss": 0.0412,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.49,
|
1603 |
+
"learning_rate": 1.1312851002705383e-05,
|
1604 |
+
"loss": 0.2425,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.49,
|
1609 |
+
"learning_rate": 1.1252117191642175e-05,
|
1610 |
+
"loss": 0.1119,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.5,
|
1615 |
+
"learning_rate": 1.1191336422682237e-05,
|
1616 |
+
"loss": 0.0455,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.5,
|
1621 |
+
"learning_rate": 1.1130510975274408e-05,
|
1622 |
+
"loss": 0.2613,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.5,
|
1627 |
+
"learning_rate": 1.1069643130543084e-05,
|
1628 |
+
"loss": 0.0651,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.5,
|
1633 |
+
"learning_rate": 1.1008735171202685e-05,
|
1634 |
+
"loss": 0.1155,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.5,
|
1639 |
+
"learning_rate": 1.0947789381472035e-05,
|
1640 |
+
"loss": 0.0661,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.5,
|
1645 |
+
"learning_rate": 1.0886808046988716e-05,
|
1646 |
+
"loss": 0.0881,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.51,
|
1651 |
+
"learning_rate": 1.0825793454723325e-05,
|
1652 |
+
"loss": 0.1123,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 0.51,
|
1657 |
+
"learning_rate": 1.0764747892893724e-05,
|
1658 |
+
"loss": 0.14,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.51,
|
1663 |
+
"learning_rate": 1.0703673650879219e-05,
|
1664 |
+
"loss": 0.0889,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.51,
|
1669 |
+
"learning_rate": 1.0642573019134703e-05,
|
1670 |
+
"loss": 0.1333,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.51,
|
1675 |
+
"learning_rate": 1.0581448289104759e-05,
|
1676 |
+
"loss": 0.0608,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.52,
|
1681 |
+
"learning_rate": 1.0520301753137725e-05,
|
1682 |
+
"loss": 0.2882,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.52,
|
1687 |
+
"learning_rate": 1.045913570439972e-05,
|
1688 |
+
"loss": 0.0661,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.52,
|
1693 |
+
"learning_rate": 1.0397952436788643e-05,
|
1694 |
+
"loss": 0.107,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 0.52,
|
1699 |
+
"learning_rate": 1.0336754244848156e-05,
|
1700 |
+
"loss": 0.0499,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.52,
|
1705 |
+
"learning_rate": 1.0275543423681622e-05,
|
1706 |
+
"loss": 0.237,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.52,
|
1711 |
+
"learning_rate": 1.0214322268866033e-05,
|
1712 |
+
"loss": 0.0301,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.53,
|
1717 |
+
"learning_rate": 1.0153093076365923e-05,
|
1718 |
+
"loss": 0.0904,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.53,
|
1723 |
+
"learning_rate": 1.0091858142447266e-05,
|
1724 |
+
"loss": 0.0165,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.53,
|
1729 |
+
"learning_rate": 1.0030619763591348e-05,
|
1730 |
+
"loss": 0.0791,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.53,
|
1735 |
+
"learning_rate": 9.969380236408656e-06,
|
1736 |
+
"loss": 0.1997,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 0.53,
|
1741 |
+
"learning_rate": 9.908141857552737e-06,
|
1742 |
+
"loss": 0.0155,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.54,
|
1747 |
+
"learning_rate": 9.846906923634079e-06,
|
1748 |
+
"loss": 0.0457,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.54,
|
1753 |
+
"learning_rate": 9.785677731133972e-06,
|
1754 |
+
"loss": 0.0203,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.54,
|
1759 |
+
"learning_rate": 9.724456576318383e-06,
|
1760 |
+
"loss": 0.2384,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.54,
|
1765 |
+
"learning_rate": 9.663245755151847e-06,
|
1766 |
+
"loss": 0.1459,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.54,
|
1771 |
+
"learning_rate": 9.602047563211359e-06,
|
1772 |
+
"loss": 0.2249,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.55,
|
1777 |
+
"learning_rate": 9.540864295600282e-06,
|
1778 |
+
"loss": 0.037,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.55,
|
1783 |
+
"learning_rate": 9.479698246862277e-06,
|
1784 |
+
"loss": 0.145,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.55,
|
1789 |
+
"learning_rate": 9.418551710895243e-06,
|
1790 |
+
"loss": 0.1501,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.55,
|
1795 |
+
"learning_rate": 9.3574269808653e-06,
|
1796 |
+
"loss": 0.0727,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.55,
|
1801 |
+
"learning_rate": 9.296326349120786e-06,
|
1802 |
+
"loss": 0.0992,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.55,
|
1807 |
+
"learning_rate": 9.23525210710628e-06,
|
1808 |
+
"loss": 0.2516,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.56,
|
1813 |
+
"learning_rate": 9.174206545276678e-06,
|
1814 |
+
"loss": 0.0628,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.56,
|
1819 |
+
"learning_rate": 9.113191953011287e-06,
|
1820 |
+
"loss": 0.132,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.56,
|
1825 |
+
"learning_rate": 9.052210618527966e-06,
|
1826 |
+
"loss": 0.0908,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.56,
|
1831 |
+
"learning_rate": 8.991264828797319e-06,
|
1832 |
+
"loss": 0.1432,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.56,
|
1837 |
+
"learning_rate": 8.93035686945692e-06,
|
1838 |
+
"loss": 0.0493,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.57,
|
1843 |
+
"learning_rate": 8.869489024725595e-06,
|
1844 |
+
"loss": 0.0578,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.57,
|
1849 |
+
"learning_rate": 8.808663577317765e-06,
|
1850 |
+
"loss": 0.0909,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.57,
|
1855 |
+
"learning_rate": 8.747882808357828e-06,
|
1856 |
+
"loss": 0.0646,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.57,
|
1861 |
+
"learning_rate": 8.687148997294622e-06,
|
1862 |
+
"loss": 0.1308,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.57,
|
1867 |
+
"learning_rate": 8.626464421815919e-06,
|
1868 |
+
"loss": 0.0729,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.57,
|
1873 |
+
"learning_rate": 8.565831357763039e-06,
|
1874 |
+
"loss": 0.1871,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.58,
|
1879 |
+
"learning_rate": 8.505252079045459e-06,
|
1880 |
+
"loss": 0.1577,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.58,
|
1885 |
+
"learning_rate": 8.444728857555572e-06,
|
1886 |
+
"loss": 0.1844,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.58,
|
1891 |
+
"learning_rate": 8.384263963083453e-06,
|
1892 |
+
"loss": 0.1673,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.58,
|
1897 |
+
"learning_rate": 8.323859663231768e-06,
|
1898 |
+
"loss": 0.1898,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.58,
|
1903 |
+
"learning_rate": 8.263518223330698e-06,
|
1904 |
+
"loss": 0.1106,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.59,
|
1909 |
+
"learning_rate": 8.203241906353014e-06,
|
1910 |
+
"loss": 0.0476,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.59,
|
1915 |
+
"learning_rate": 8.143032972829184e-06,
|
1916 |
+
"loss": 0.1432,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.59,
|
1921 |
+
"learning_rate": 8.082893680762619e-06,
|
1922 |
+
"loss": 0.0249,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.59,
|
1927 |
+
"learning_rate": 8.022826285544967e-06,
|
1928 |
+
"loss": 0.0762,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.59,
|
1933 |
+
"learning_rate": 7.962833039871562e-06,
|
1934 |
+
"loss": 0.1468,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.6,
|
1939 |
+
"learning_rate": 7.902916193656898e-06,
|
1940 |
+
"loss": 0.0272,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.6,
|
1945 |
+
"learning_rate": 7.843077993950302e-06,
|
1946 |
+
"loss": 0.0495,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.6,
|
1951 |
+
"learning_rate": 7.783320684851613e-06,
|
1952 |
+
"loss": 0.1958,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.6,
|
1957 |
+
"learning_rate": 7.72364650742707e-06,
|
1958 |
+
"loss": 0.0869,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.6,
|
1963 |
+
"learning_rate": 7.664057699625215e-06,
|
1964 |
+
"loss": 0.2957,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 0.6,
|
1969 |
+
"learning_rate": 7.604556496193015e-06,
|
1970 |
+
"loss": 0.0833,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.61,
|
1975 |
+
"learning_rate": 7.545145128592009e-06,
|
1976 |
+
"loss": 0.0978,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.61,
|
1981 |
+
"learning_rate": 7.485825824914658e-06,
|
1982 |
+
"loss": 0.1941,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.61,
|
1987 |
+
"learning_rate": 7.426600809800753e-06,
|
1988 |
+
"loss": 0.0384,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 0.61,
|
1993 |
+
"learning_rate": 7.367472304354011e-06,
|
1994 |
+
"loss": 0.0872,
|
1995 |
+
"step": 331
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.61,
|
1999 |
+
"learning_rate": 7.308442526058757e-06,
|
2000 |
+
"loss": 0.1051,
|
2001 |
+
"step": 332
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 0.62,
|
2005 |
+
"learning_rate": 7.249513688696786e-06,
|
2006 |
+
"loss": 0.0918,
|
2007 |
+
"step": 333
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 0.62,
|
2011 |
+
"learning_rate": 7.190688002264308e-06,
|
2012 |
+
"loss": 0.2169,
|
2013 |
+
"step": 334
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 0.62,
|
2017 |
+
"learning_rate": 7.131967672889101e-06,
|
2018 |
+
"loss": 0.1647,
|
2019 |
+
"step": 335
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.62,
|
2023 |
+
"learning_rate": 7.073354902747742e-06,
|
2024 |
+
"loss": 0.0585,
|
2025 |
+
"step": 336
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.62,
|
2029 |
+
"learning_rate": 7.014851889983058e-06,
|
2030 |
+
"loss": 0.1743,
|
2031 |
+
"step": 337
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 0.62,
|
2035 |
+
"learning_rate": 6.956460828621641e-06,
|
2036 |
+
"loss": 0.3001,
|
2037 |
+
"step": 338
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.63,
|
2041 |
+
"learning_rate": 6.898183908491617e-06,
|
2042 |
+
"loss": 0.0977,
|
2043 |
+
"step": 339
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 0.63,
|
2047 |
+
"learning_rate": 6.840023315140476e-06,
|
2048 |
+
"loss": 0.0549,
|
2049 |
+
"step": 340
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 0.63,
|
2053 |
+
"learning_rate": 6.781981229753145e-06,
|
2054 |
+
"loss": 0.0738,
|
2055 |
+
"step": 341
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 0.63,
|
2059 |
+
"learning_rate": 6.7240598290701585e-06,
|
2060 |
+
"loss": 0.027,
|
2061 |
+
"step": 342
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.63,
|
2065 |
+
"learning_rate": 6.666261285306048e-06,
|
2066 |
+
"loss": 0.0647,
|
2067 |
+
"step": 343
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.64,
|
2071 |
+
"learning_rate": 6.608587766067853e-06,
|
2072 |
+
"loss": 0.0531,
|
2073 |
+
"step": 344
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 0.64,
|
2077 |
+
"learning_rate": 6.551041434273862e-06,
|
2078 |
+
"loss": 0.0582,
|
2079 |
+
"step": 345
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.64,
|
2083 |
+
"learning_rate": 6.4936244480724575e-06,
|
2084 |
+
"loss": 0.2357,
|
2085 |
+
"step": 346
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 0.64,
|
2089 |
+
"learning_rate": 6.4363389607612204e-06,
|
2090 |
+
"loss": 0.0614,
|
2091 |
+
"step": 347
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 0.64,
|
2095 |
+
"learning_rate": 6.379187120706138e-06,
|
2096 |
+
"loss": 0.1516,
|
2097 |
+
"step": 348
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 0.65,
|
2101 |
+
"learning_rate": 6.322171071261071e-06,
|
2102 |
+
"loss": 0.2906,
|
2103 |
+
"step": 349
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.65,
|
2107 |
+
"learning_rate": 6.265292950687329e-06,
|
2108 |
+
"loss": 0.0402,
|
2109 |
+
"step": 350
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.65,
|
2113 |
+
"learning_rate": 6.208554892073528e-06,
|
2114 |
+
"loss": 0.0895,
|
2115 |
+
"step": 351
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 0.65,
|
2119 |
+
"learning_rate": 6.151959023255545e-06,
|
2120 |
+
"loss": 0.109,
|
2121 |
+
"step": 352
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.65,
|
2125 |
+
"learning_rate": 6.095507466736763e-06,
|
2126 |
+
"loss": 0.1338,
|
2127 |
+
"step": 353
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 0.65,
|
2131 |
+
"learning_rate": 6.039202339608432e-06,
|
2132 |
+
"loss": 0.0541,
|
2133 |
+
"step": 354
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 0.66,
|
2137 |
+
"learning_rate": 5.983045753470308e-06,
|
2138 |
+
"loss": 0.0614,
|
2139 |
+
"step": 355
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 0.66,
|
2143 |
+
"learning_rate": 5.927039814351426e-06,
|
2144 |
+
"loss": 0.2844,
|
2145 |
+
"step": 356
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.66,
|
2149 |
+
"learning_rate": 5.871186622631155e-06,
|
2150 |
+
"loss": 0.1412,
|
2151 |
+
"step": 357
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.66,
|
2155 |
+
"learning_rate": 5.815488272960388e-06,
|
2156 |
+
"loss": 0.0575,
|
2157 |
+
"step": 358
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.66,
|
2161 |
+
"learning_rate": 5.759946854183036e-06,
|
2162 |
+
"loss": 0.1047,
|
2163 |
+
"step": 359
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.67,
|
2167 |
+
"learning_rate": 5.704564449257635e-06,
|
2168 |
+
"loss": 0.2065,
|
2169 |
+
"step": 360
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 0.67,
|
2173 |
+
"learning_rate": 5.649343135179271e-06,
|
2174 |
+
"loss": 0.0995,
|
2175 |
+
"step": 361
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 0.67,
|
2179 |
+
"learning_rate": 5.59428498290167e-06,
|
2180 |
+
"loss": 0.1517,
|
2181 |
+
"step": 362
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 0.67,
|
2185 |
+
"learning_rate": 5.539392057259536e-06,
|
2186 |
+
"loss": 0.1122,
|
2187 |
+
"step": 363
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.67,
|
2191 |
+
"learning_rate": 5.484666416891109e-06,
|
2192 |
+
"loss": 0.0992,
|
2193 |
+
"step": 364
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.67,
|
2197 |
+
"learning_rate": 5.430110114160965e-06,
|
2198 |
+
"loss": 0.1303,
|
2199 |
+
"step": 365
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 0.68,
|
2203 |
+
"learning_rate": 5.375725195083046e-06,
|
2204 |
+
"loss": 0.1192,
|
2205 |
+
"step": 366
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 0.68,
|
2209 |
+
"learning_rate": 5.321513699243924e-06,
|
2210 |
+
"loss": 0.0991,
|
2211 |
+
"step": 367
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 0.68,
|
2215 |
+
"learning_rate": 5.267477659726319e-06,
|
2216 |
+
"loss": 0.077,
|
2217 |
+
"step": 368
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 0.68,
|
2221 |
+
"learning_rate": 5.213619103032845e-06,
|
2222 |
+
"loss": 0.1052,
|
2223 |
+
"step": 369
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 0.68,
|
2227 |
+
"learning_rate": 5.159940049010015e-06,
|
2228 |
+
"loss": 0.2359,
|
2229 |
+
"step": 370
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.69,
|
2233 |
+
"learning_rate": 5.106442510772489e-06,
|
2234 |
+
"loss": 0.0501,
|
2235 |
+
"step": 371
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.69,
|
2239 |
+
"learning_rate": 5.053128494627578e-06,
|
2240 |
+
"loss": 0.0803,
|
2241 |
+
"step": 372
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 0.69,
|
2245 |
+
"learning_rate": 5.000000000000003e-06,
|
2246 |
+
"loss": 0.2073,
|
2247 |
+
"step": 373
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 0.69,
|
2251 |
+
"learning_rate": 4.947059019356904e-06,
|
2252 |
+
"loss": 0.0479,
|
2253 |
+
"step": 374
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 0.69,
|
2257 |
+
"learning_rate": 4.89430753813313e-06,
|
2258 |
+
"loss": 0.125,
|
2259 |
+
"step": 375
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 0.7,
|
2263 |
+
"learning_rate": 4.8417475346567635e-06,
|
2264 |
+
"loss": 0.0715,
|
2265 |
+
"step": 376
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 0.7,
|
2269 |
+
"learning_rate": 4.78938098007494e-06,
|
2270 |
+
"loss": 0.0242,
|
2271 |
+
"step": 377
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.7,
|
2275 |
+
"learning_rate": 4.737209838279923e-06,
|
2276 |
+
"loss": 0.1242,
|
2277 |
+
"step": 378
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.7,
|
2281 |
+
"learning_rate": 4.685236065835443e-06,
|
2282 |
+
"loss": 0.1771,
|
2283 |
+
"step": 379
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 0.7,
|
2287 |
+
"learning_rate": 4.633461611903336e-06,
|
2288 |
+
"loss": 0.1037,
|
2289 |
+
"step": 380
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 0.7,
|
2293 |
+
"learning_rate": 4.581888418170429e-06,
|
2294 |
+
"loss": 0.0733,
|
2295 |
+
"step": 381
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 0.71,
|
2299 |
+
"learning_rate": 4.530518418775734e-06,
|
2300 |
+
"loss": 0.0565,
|
2301 |
+
"step": 382
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 0.71,
|
2305 |
+
"learning_rate": 4.479353540237903e-06,
|
2306 |
+
"loss": 0.1092,
|
2307 |
+
"step": 383
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 0.71,
|
2311 |
+
"learning_rate": 4.4283957013829845e-06,
|
2312 |
+
"loss": 0.0371,
|
2313 |
+
"step": 384
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.71,
|
2317 |
+
"learning_rate": 4.3776468132724605e-06,
|
2318 |
+
"loss": 0.1105,
|
2319 |
+
"step": 385
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.71,
|
2323 |
+
"learning_rate": 4.327108779131573e-06,
|
2324 |
+
"loss": 0.1856,
|
2325 |
+
"step": 386
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 0.72,
|
2329 |
+
"learning_rate": 4.276783494277954e-06,
|
2330 |
+
"loss": 0.1237,
|
2331 |
+
"step": 387
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 0.72,
|
2335 |
+
"learning_rate": 4.226672846050538e-06,
|
2336 |
+
"loss": 0.2521,
|
2337 |
+
"step": 388
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 0.72,
|
2341 |
+
"learning_rate": 4.176778713738787e-06,
|
2342 |
+
"loss": 0.0565,
|
2343 |
+
"step": 389
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 0.72,
|
2347 |
+
"learning_rate": 4.127102968512214e-06,
|
2348 |
+
"loss": 0.0518,
|
2349 |
+
"step": 390
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 0.72,
|
2353 |
+
"learning_rate": 4.077647473350201e-06,
|
2354 |
+
"loss": 0.0735,
|
2355 |
+
"step": 391
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.72,
|
2359 |
+
"learning_rate": 4.028414082972141e-06,
|
2360 |
+
"loss": 0.0786,
|
2361 |
+
"step": 392
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.73,
|
2365 |
+
"learning_rate": 3.9794046437678705e-06,
|
2366 |
+
"loss": 0.025,
|
2367 |
+
"step": 393
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 0.73,
|
2371 |
+
"learning_rate": 3.930620993728434e-06,
|
2372 |
+
"loss": 0.2235,
|
2373 |
+
"step": 394
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 0.73,
|
2377 |
+
"learning_rate": 3.882064962377154e-06,
|
2378 |
+
"loss": 0.1307,
|
2379 |
+
"step": 395
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 0.73,
|
2383 |
+
"learning_rate": 3.83373837070101e-06,
|
2384 |
+
"loss": 0.0224,
|
2385 |
+
"step": 396
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 0.73,
|
2389 |
+
"learning_rate": 3.7856430310823546e-06,
|
2390 |
+
"loss": 0.1109,
|
2391 |
+
"step": 397
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 0.74,
|
2395 |
+
"learning_rate": 3.737780747230941e-06,
|
2396 |
+
"loss": 0.0624,
|
2397 |
+
"step": 398
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.74,
|
2401 |
+
"learning_rate": 3.6901533141162804e-06,
|
2402 |
+
"loss": 0.055,
|
2403 |
+
"step": 399
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.74,
|
2407 |
+
"learning_rate": 3.6427625179003223e-06,
|
2408 |
+
"loss": 0.2079,
|
2409 |
+
"step": 400
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 0.74,
|
2413 |
+
"learning_rate": 3.595610135870472e-06,
|
2414 |
+
"loss": 0.2215,
|
2415 |
+
"step": 401
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 0.74,
|
2419 |
+
"learning_rate": 3.548697936372937e-06,
|
2420 |
+
"loss": 0.1016,
|
2421 |
+
"step": 402
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 0.74,
|
2425 |
+
"learning_rate": 3.5020276787464058e-06,
|
2426 |
+
"loss": 0.1229,
|
2427 |
+
"step": 403
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 0.75,
|
2431 |
+
"learning_rate": 3.455601113256073e-06,
|
2432 |
+
"loss": 0.0759,
|
2433 |
+
"step": 404
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 0.75,
|
2437 |
+
"learning_rate": 3.4094199810279926e-06,
|
2438 |
+
"loss": 0.1667,
|
2439 |
+
"step": 405
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.75,
|
2443 |
+
"learning_rate": 3.3634860139837877e-06,
|
2444 |
+
"loss": 0.048,
|
2445 |
+
"step": 406
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.75,
|
2449 |
+
"learning_rate": 3.317800934775696e-06,
|
2450 |
+
"loss": 0.0543,
|
2451 |
+
"step": 407
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 0.75,
|
2455 |
+
"learning_rate": 3.2723664567219627e-06,
|
2456 |
+
"loss": 0.1656,
|
2457 |
+
"step": 408
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 0.76,
|
2461 |
+
"learning_rate": 3.2271842837425917e-06,
|
2462 |
+
"loss": 0.0409,
|
2463 |
+
"step": 409
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 0.76,
|
2467 |
+
"learning_rate": 3.1822561102954373e-06,
|
2468 |
+
"loss": 0.1173,
|
2469 |
+
"step": 410
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 0.76,
|
2473 |
+
"learning_rate": 3.1375836213126653e-06,
|
2474 |
+
"loss": 0.0964,
|
2475 |
+
"step": 411
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 0.76,
|
2479 |
+
"learning_rate": 3.0931684921375572e-06,
|
2480 |
+
"loss": 0.0432,
|
2481 |
+
"step": 412
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.76,
|
2485 |
+
"learning_rate": 3.0490123884616795e-06,
|
2486 |
+
"loss": 0.1451,
|
2487 |
+
"step": 413
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.77,
|
2491 |
+
"learning_rate": 3.0051169662624224e-06,
|
2492 |
+
"loss": 0.1226,
|
2493 |
+
"step": 414
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 0.77,
|
2497 |
+
"learning_rate": 2.9614838717408866e-06,
|
2498 |
+
"loss": 0.096,
|
2499 |
+
"step": 415
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 0.77,
|
2503 |
+
"learning_rate": 2.918114741260156e-06,
|
2504 |
+
"loss": 0.1152,
|
2505 |
+
"step": 416
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 0.77,
|
2509 |
+
"learning_rate": 2.8750112012839215e-06,
|
2510 |
+
"loss": 0.0575,
|
2511 |
+
"step": 417
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 0.77,
|
2515 |
+
"learning_rate": 2.8321748683154893e-06,
|
2516 |
+
"loss": 0.097,
|
2517 |
+
"step": 418
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 0.77,
|
2521 |
+
"learning_rate": 2.7896073488371535e-06,
|
2522 |
+
"loss": 0.0513,
|
2523 |
+
"step": 419
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.78,
|
2527 |
+
"learning_rate": 2.7473102392499517e-06,
|
2528 |
+
"loss": 0.0566,
|
2529 |
+
"step": 420
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.78,
|
2533 |
+
"learning_rate": 2.7052851258137936e-06,
|
2534 |
+
"loss": 0.0193,
|
2535 |
+
"step": 421
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 0.78,
|
2539 |
+
"learning_rate": 2.663533584587974e-06,
|
2540 |
+
"loss": 0.1507,
|
2541 |
+
"step": 422
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 0.78,
|
2545 |
+
"learning_rate": 2.622057181372063e-06,
|
2546 |
+
"loss": 0.0208,
|
2547 |
+
"step": 423
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 0.78,
|
2551 |
+
"learning_rate": 2.580857471647186e-06,
|
2552 |
+
"loss": 0.0893,
|
2553 |
+
"step": 424
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 0.79,
|
2557 |
+
"learning_rate": 2.539936000517689e-06,
|
2558 |
+
"loss": 0.0988,
|
2559 |
+
"step": 425
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 0.79,
|
2563 |
+
"learning_rate": 2.4992943026531935e-06,
|
2564 |
+
"loss": 0.0368,
|
2565 |
+
"step": 426
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.79,
|
2569 |
+
"learning_rate": 2.4589339022310386e-06,
|
2570 |
+
"loss": 0.0911,
|
2571 |
+
"step": 427
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.79,
|
2575 |
+
"learning_rate": 2.4188563128791255e-06,
|
2576 |
+
"loss": 0.1093,
|
2577 |
+
"step": 428
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 0.79,
|
2581 |
+
"learning_rate": 2.379063037619146e-06,
|
2582 |
+
"loss": 0.0717,
|
2583 |
+
"step": 429
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 0.79,
|
2587 |
+
"learning_rate": 2.339555568810221e-06,
|
2588 |
+
"loss": 0.1486,
|
2589 |
+
"step": 430
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 0.8,
|
2593 |
+
"learning_rate": 2.300335388092929e-06,
|
2594 |
+
"loss": 0.1174,
|
2595 |
+
"step": 431
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 0.8,
|
2599 |
+
"learning_rate": 2.261403966333742e-06,
|
2600 |
+
"loss": 0.2022,
|
2601 |
+
"step": 432
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 0.8,
|
2605 |
+
"learning_rate": 2.2227627635698624e-06,
|
2606 |
+
"loss": 0.0376,
|
2607 |
+
"step": 433
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.8,
|
2611 |
+
"learning_rate": 2.1844132289544684e-06,
|
2612 |
+
"loss": 0.3022,
|
2613 |
+
"step": 434
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.8,
|
2617 |
+
"learning_rate": 2.1463568007023706e-06,
|
2618 |
+
"loss": 0.0121,
|
2619 |
+
"step": 435
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 0.81,
|
2623 |
+
"learning_rate": 2.1085949060360654e-06,
|
2624 |
+
"loss": 0.1441,
|
2625 |
+
"step": 436
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 0.81,
|
2629 |
+
"learning_rate": 2.0711289611322204e-06,
|
2630 |
+
"loss": 0.0457,
|
2631 |
+
"step": 437
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 0.81,
|
2635 |
+
"learning_rate": 2.0339603710685574e-06,
|
2636 |
+
"loss": 0.0324,
|
2637 |
+
"step": 438
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 0.81,
|
2641 |
+
"learning_rate": 1.9970905297711606e-06,
|
2642 |
+
"loss": 0.045,
|
2643 |
+
"step": 439
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 0.81,
|
2647 |
+
"learning_rate": 1.9605208199621993e-06,
|
2648 |
+
"loss": 0.0644,
|
2649 |
+
"step": 440
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.82,
|
2653 |
+
"learning_rate": 1.924252613108073e-06,
|
2654 |
+
"loss": 0.0743,
|
2655 |
+
"step": 441
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.82,
|
2659 |
+
"learning_rate": 1.8882872693679787e-06,
|
2660 |
+
"loss": 0.054,
|
2661 |
+
"step": 442
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 0.82,
|
2665 |
+
"learning_rate": 1.8526261375428955e-06,
|
2666 |
+
"loss": 0.1679,
|
2667 |
+
"step": 443
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 0.82,
|
2671 |
+
"learning_rate": 1.8172705550250093e-06,
|
2672 |
+
"loss": 0.0666,
|
2673 |
+
"step": 444
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 0.82,
|
2677 |
+
"learning_rate": 1.7822218477475496e-06,
|
2678 |
+
"loss": 0.2,
|
2679 |
+
"step": 445
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 0.82,
|
2683 |
+
"learning_rate": 1.7474813301350668e-06,
|
2684 |
+
"loss": 0.1191,
|
2685 |
+
"step": 446
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 0.83,
|
2689 |
+
"learning_rate": 1.7130503050541368e-06,
|
2690 |
+
"loss": 0.1166,
|
2691 |
+
"step": 447
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.83,
|
2695 |
+
"learning_rate": 1.6789300637645e-06,
|
2696 |
+
"loss": 0.0089,
|
2697 |
+
"step": 448
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.83,
|
2701 |
+
"learning_rate": 1.6451218858706374e-06,
|
2702 |
+
"loss": 0.0848,
|
2703 |
+
"step": 449
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 0.83,
|
2707 |
+
"learning_rate": 1.6116270392737753e-06,
|
2708 |
+
"loss": 0.1263,
|
2709 |
+
"step": 450
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 0.83,
|
2713 |
+
"learning_rate": 1.578446780124344e-06,
|
2714 |
+
"loss": 0.1338,
|
2715 |
+
"step": 451
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 0.84,
|
2719 |
+
"learning_rate": 1.5455823527748626e-06,
|
2720 |
+
"loss": 0.0566,
|
2721 |
+
"step": 452
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 0.84,
|
2725 |
+
"learning_rate": 1.5130349897332764e-06,
|
2726 |
+
"loss": 0.0618,
|
2727 |
+
"step": 453
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 0.84,
|
2731 |
+
"learning_rate": 1.4808059116167306e-06,
|
2732 |
+
"loss": 0.0259,
|
2733 |
+
"step": 454
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.84,
|
2737 |
+
"learning_rate": 1.4488963271057943e-06,
|
2738 |
+
"loss": 0.1682,
|
2739 |
+
"step": 455
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.84,
|
2743 |
+
"learning_rate": 1.4173074328991376e-06,
|
2744 |
+
"loss": 0.0967,
|
2745 |
+
"step": 456
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 0.84,
|
2749 |
+
"learning_rate": 1.3860404136686411e-06,
|
2750 |
+
"loss": 0.0799,
|
2751 |
+
"step": 457
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 0.85,
|
2755 |
+
"learning_rate": 1.355096442014977e-06,
|
2756 |
+
"loss": 0.1426,
|
2757 |
+
"step": 458
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 0.85,
|
2761 |
+
"learning_rate": 1.3244766784236307e-06,
|
2762 |
+
"loss": 0.1401,
|
2763 |
+
"step": 459
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 0.85,
|
2767 |
+
"learning_rate": 1.294182271221377e-06,
|
2768 |
+
"loss": 0.0526,
|
2769 |
+
"step": 460
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 0.85,
|
2773 |
+
"learning_rate": 1.2642143565332154e-06,
|
2774 |
+
"loss": 0.1516,
|
2775 |
+
"step": 461
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.85,
|
2779 |
+
"learning_rate": 1.2345740582397647e-06,
|
2780 |
+
"loss": 0.0326,
|
2781 |
+
"step": 462
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.86,
|
2785 |
+
"learning_rate": 1.2052624879351105e-06,
|
2786 |
+
"loss": 0.0517,
|
2787 |
+
"step": 463
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 0.86,
|
2791 |
+
"learning_rate": 1.176280744885121e-06,
|
2792 |
+
"loss": 0.094,
|
2793 |
+
"step": 464
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 0.86,
|
2797 |
+
"learning_rate": 1.1476299159862204e-06,
|
2798 |
+
"loss": 0.0684,
|
2799 |
+
"step": 465
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 0.86,
|
2803 |
+
"learning_rate": 1.1193110757246251e-06,
|
2804 |
+
"loss": 0.0845,
|
2805 |
+
"step": 466
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 0.86,
|
2809 |
+
"learning_rate": 1.09132528613605e-06,
|
2810 |
+
"loss": 0.1105,
|
2811 |
+
"step": 467
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 0.87,
|
2815 |
+
"learning_rate": 1.0636735967658785e-06,
|
2816 |
+
"loss": 0.0947,
|
2817 |
+
"step": 468
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.87,
|
2821 |
+
"learning_rate": 1.0363570446297999e-06,
|
2822 |
+
"loss": 0.0685,
|
2823 |
+
"step": 469
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.87,
|
2827 |
+
"learning_rate": 1.0093766541749206e-06,
|
2828 |
+
"loss": 0.0902,
|
2829 |
+
"step": 470
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 0.87,
|
2833 |
+
"learning_rate": 9.827334372413444e-07,
|
2834 |
+
"loss": 0.0257,
|
2835 |
+
"step": 471
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 0.87,
|
2839 |
+
"learning_rate": 9.564283930242258e-07,
|
2840 |
+
"loss": 0.1048,
|
2841 |
+
"step": 472
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 0.87,
|
2845 |
+
"learning_rate": 9.304625080362939e-07,
|
2846 |
+
"loss": 0.1365,
|
2847 |
+
"step": 473
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 0.88,
|
2851 |
+
"learning_rate": 9.048367560708604e-07,
|
2852 |
+
"loss": 0.2323,
|
2853 |
+
"step": 474
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 0.88,
|
2857 |
+
"learning_rate": 8.79552098165296e-07,
|
2858 |
+
"loss": 0.0435,
|
2859 |
+
"step": 475
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.88,
|
2863 |
+
"learning_rate": 8.546094825649909e-07,
|
2864 |
+
"loss": 0.0644,
|
2865 |
+
"step": 476
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.88,
|
2869 |
+
"learning_rate": 8.300098446877925e-07,
|
2870 |
+
"loss": 0.0884,
|
2871 |
+
"step": 477
|
2872 |
+
},
|
2873 |
+
{
|
2874 |
+
"epoch": 0.88,
|
2875 |
+
"learning_rate": 8.057541070889229e-07,
|
2876 |
+
"loss": 0.1381,
|
2877 |
+
"step": 478
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 0.89,
|
2881 |
+
"learning_rate": 7.818431794263837e-07,
|
2882 |
+
"loss": 0.0472,
|
2883 |
+
"step": 479
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 0.89,
|
2887 |
+
"learning_rate": 7.582779584268374e-07,
|
2888 |
+
"loss": 0.0606,
|
2889 |
+
"step": 480
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 0.89,
|
2893 |
+
"learning_rate": 7.350593278519824e-07,
|
2894 |
+
"loss": 0.0325,
|
2895 |
+
"step": 481
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 0.89,
|
2899 |
+
"learning_rate": 7.121881584654056e-07,
|
2900 |
+
"loss": 0.0391,
|
2901 |
+
"step": 482
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.89,
|
2905 |
+
"learning_rate": 6.896653079999249e-07,
|
2906 |
+
"loss": 0.0965,
|
2907 |
+
"step": 483
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.89,
|
2911 |
+
"learning_rate": 6.67491621125429e-07,
|
2912 |
+
"loss": 0.0288,
|
2913 |
+
"step": 484
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 0.9,
|
2917 |
+
"learning_rate": 6.45667929417193e-07,
|
2918 |
+
"loss": 0.0608,
|
2919 |
+
"step": 485
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 0.9,
|
2923 |
+
"learning_rate": 6.241950513246931e-07,
|
2924 |
+
"loss": 0.0619,
|
2925 |
+
"step": 486
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 0.9,
|
2929 |
+
"learning_rate": 6.030737921409169e-07,
|
2930 |
+
"loss": 0.2691,
|
2931 |
+
"step": 487
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 0.9,
|
2935 |
+
"learning_rate": 5.823049439721562e-07,
|
2936 |
+
"loss": 0.1071,
|
2937 |
+
"step": 488
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 0.9,
|
2941 |
+
"learning_rate": 5.618892857083069e-07,
|
2942 |
+
"loss": 0.1501,
|
2943 |
+
"step": 489
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.91,
|
2947 |
+
"learning_rate": 5.418275829936537e-07,
|
2948 |
+
"loss": 0.0807,
|
2949 |
+
"step": 490
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.91,
|
2953 |
+
"learning_rate": 5.221205881981594e-07,
|
2954 |
+
"loss": 0.0666,
|
2955 |
+
"step": 491
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 0.91,
|
2959 |
+
"learning_rate": 5.027690403892461e-07,
|
2960 |
+
"loss": 0.0993,
|
2961 |
+
"step": 492
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 0.91,
|
2965 |
+
"learning_rate": 4.837736653040825e-07,
|
2966 |
+
"loss": 0.2467,
|
2967 |
+
"step": 493
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 0.91,
|
2971 |
+
"learning_rate": 4.6513517532236096e-07,
|
2972 |
+
"loss": 0.0563,
|
2973 |
+
"step": 494
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 0.91,
|
2977 |
+
"learning_rate": 4.468542694395861e-07,
|
2978 |
+
"loss": 0.0792,
|
2979 |
+
"step": 495
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 0.92,
|
2983 |
+
"learning_rate": 4.2893163324085886e-07,
|
2984 |
+
"loss": 0.0648,
|
2985 |
+
"step": 496
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.92,
|
2989 |
+
"learning_rate": 4.113679388751635e-07,
|
2990 |
+
"loss": 0.3011,
|
2991 |
+
"step": 497
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.92,
|
2995 |
+
"learning_rate": 3.941638450301644e-07,
|
2996 |
+
"loss": 0.221,
|
2997 |
+
"step": 498
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 0.92,
|
3001 |
+
"learning_rate": 3.773199969074959e-07,
|
3002 |
+
"loss": 0.0961,
|
3003 |
+
"step": 499
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 0.92,
|
3007 |
+
"learning_rate": 3.608370261985761e-07,
|
3008 |
+
"loss": 0.0816,
|
3009 |
+
"step": 500
|
3010 |
+
}
|
3011 |
+
],
|
3012 |
+
"logging_steps": 1.0,
|
3013 |
+
"max_steps": 541,
|
3014 |
+
"num_input_tokens_seen": 0,
|
3015 |
+
"num_train_epochs": 1,
|
3016 |
+
"save_steps": 500,
|
3017 |
+
"total_flos": 1194534973440.0,
|
3018 |
+
"train_batch_size": 10,
|
3019 |
+
"trial_name": null,
|
3020 |
+
"trial_params": null
|
3021 |
+
}
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39a1b7853796df569dea25e1cfc44a0eebd9c31bc3cf60c516910866a1ef6ae7
|
3 |
+
size 6968
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/config.json
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaMistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"freeze_mm_mlp_adapter": false,
|
10 |
+
"freeze_mm_vision_resampler": false,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"image_aspect_ratio": "anyres",
|
14 |
+
"image_crop_resolution": 224,
|
15 |
+
"image_grid_pinpoints": [
|
16 |
+
[
|
17 |
+
336,
|
18 |
+
672
|
19 |
+
],
|
20 |
+
[
|
21 |
+
672,
|
22 |
+
336
|
23 |
+
],
|
24 |
+
[
|
25 |
+
672,
|
26 |
+
672
|
27 |
+
],
|
28 |
+
[
|
29 |
+
1008,
|
30 |
+
336
|
31 |
+
],
|
32 |
+
[
|
33 |
+
336,
|
34 |
+
1008
|
35 |
+
]
|
36 |
+
],
|
37 |
+
"image_split_resolution": 224,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"intermediate_size": 14336,
|
40 |
+
"max_position_embeddings": 32768,
|
41 |
+
"mm_hidden_size": 1024,
|
42 |
+
"mm_patch_merge_type": "spatial_unpad",
|
43 |
+
"mm_projector_lr": 2e-05,
|
44 |
+
"mm_projector_type": "mlp2x_gelu",
|
45 |
+
"mm_resampler_type": null,
|
46 |
+
"mm_use_im_patch_token": false,
|
47 |
+
"mm_use_im_start_end": false,
|
48 |
+
"mm_vision_select_feature": "patch",
|
49 |
+
"mm_vision_select_layer": -2,
|
50 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
51 |
+
"mm_vision_tower_lr": 2e-06,
|
52 |
+
"model_type": "llava_mistral",
|
53 |
+
"num_attention_heads": 32,
|
54 |
+
"num_hidden_layers": 32,
|
55 |
+
"num_key_value_heads": 8,
|
56 |
+
"rms_norm_eps": 1e-05,
|
57 |
+
"rope_theta": 1000000.0,
|
58 |
+
"sliding_window": null,
|
59 |
+
"tie_word_embeddings": false,
|
60 |
+
"tokenizer_model_max_length": 4096,
|
61 |
+
"tokenizer_padding_side": "right",
|
62 |
+
"torch_dtype": "bfloat16",
|
63 |
+
"transformers_version": "4.37.2",
|
64 |
+
"tune_mm_mlp_adapter": false,
|
65 |
+
"tune_mm_vision_resampler": false,
|
66 |
+
"unfreeze_mm_vision_tower": true,
|
67 |
+
"use_cache": true,
|
68 |
+
"use_mm_proj": true,
|
69 |
+
"vocab_size": 32000
|
70 |
+
}
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0102c05ff05f99863f06b141ed5812df27620d7c8dd7551f8bac60d6b2f9f0e
|
3 |
+
size 41961648
|
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json
ADDED
@@ -0,0 +1,3276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 541,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 7.142857142857143e-07,
|
14 |
+
"loss": 0.6789,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"learning_rate": 1.4285714285714286e-06,
|
20 |
+
"loss": 0.8481,
|
21 |
+
"step": 2
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 2.1428571428571427e-06,
|
26 |
+
"loss": 0.663,
|
27 |
+
"step": 3
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 2.8571428571428573e-06,
|
32 |
+
"loss": 0.679,
|
33 |
+
"step": 4
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.01,
|
37 |
+
"learning_rate": 3.5714285714285718e-06,
|
38 |
+
"loss": 1.0166,
|
39 |
+
"step": 5
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.01,
|
43 |
+
"learning_rate": 4.2857142857142855e-06,
|
44 |
+
"loss": 0.4693,
|
45 |
+
"step": 6
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.01,
|
49 |
+
"learning_rate": 5e-06,
|
50 |
+
"loss": 0.4891,
|
51 |
+
"step": 7
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.01,
|
55 |
+
"learning_rate": 5.7142857142857145e-06,
|
56 |
+
"loss": 0.5523,
|
57 |
+
"step": 8
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.02,
|
61 |
+
"learning_rate": 6.4285714285714295e-06,
|
62 |
+
"loss": 0.2909,
|
63 |
+
"step": 9
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.02,
|
67 |
+
"learning_rate": 7.1428571428571436e-06,
|
68 |
+
"loss": 0.2598,
|
69 |
+
"step": 10
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.02,
|
73 |
+
"learning_rate": 7.857142857142858e-06,
|
74 |
+
"loss": 0.2532,
|
75 |
+
"step": 11
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.02,
|
79 |
+
"learning_rate": 7.857142857142858e-06,
|
80 |
+
"loss": 0.4867,
|
81 |
+
"step": 12
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.02,
|
85 |
+
"learning_rate": 8.571428571428571e-06,
|
86 |
+
"loss": 0.4145,
|
87 |
+
"step": 13
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.03,
|
91 |
+
"learning_rate": 8.571428571428571e-06,
|
92 |
+
"loss": 0.3161,
|
93 |
+
"step": 14
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.03,
|
97 |
+
"learning_rate": 9.285714285714288e-06,
|
98 |
+
"loss": 0.1836,
|
99 |
+
"step": 15
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.03,
|
103 |
+
"learning_rate": 1e-05,
|
104 |
+
"loss": 0.3355,
|
105 |
+
"step": 16
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.03,
|
109 |
+
"learning_rate": 1.0714285714285714e-05,
|
110 |
+
"loss": 0.2286,
|
111 |
+
"step": 17
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.03,
|
115 |
+
"learning_rate": 1.1428571428571429e-05,
|
116 |
+
"loss": 0.3594,
|
117 |
+
"step": 18
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.04,
|
121 |
+
"learning_rate": 1.2142857142857142e-05,
|
122 |
+
"loss": 0.2981,
|
123 |
+
"step": 19
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.04,
|
127 |
+
"learning_rate": 1.2857142857142859e-05,
|
128 |
+
"loss": 0.3021,
|
129 |
+
"step": 20
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.04,
|
133 |
+
"learning_rate": 1.3571428571428574e-05,
|
134 |
+
"loss": 0.3866,
|
135 |
+
"step": 21
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.04,
|
139 |
+
"learning_rate": 1.4285714285714287e-05,
|
140 |
+
"loss": 0.2409,
|
141 |
+
"step": 22
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.04,
|
145 |
+
"learning_rate": 1.5000000000000002e-05,
|
146 |
+
"loss": 0.1397,
|
147 |
+
"step": 23
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.04,
|
151 |
+
"learning_rate": 1.5714285714285715e-05,
|
152 |
+
"loss": 0.1416,
|
153 |
+
"step": 24
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.05,
|
157 |
+
"learning_rate": 1.642857142857143e-05,
|
158 |
+
"loss": 0.1838,
|
159 |
+
"step": 25
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.05,
|
163 |
+
"learning_rate": 1.7142857142857142e-05,
|
164 |
+
"loss": 0.1505,
|
165 |
+
"step": 26
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.05,
|
169 |
+
"learning_rate": 1.785714285714286e-05,
|
170 |
+
"loss": 0.3278,
|
171 |
+
"step": 27
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.05,
|
175 |
+
"learning_rate": 1.8571428571428575e-05,
|
176 |
+
"loss": 0.2567,
|
177 |
+
"step": 28
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.05,
|
181 |
+
"learning_rate": 1.928571428571429e-05,
|
182 |
+
"loss": 0.1218,
|
183 |
+
"step": 29
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.06,
|
187 |
+
"learning_rate": 2e-05,
|
188 |
+
"loss": 0.2288,
|
189 |
+
"step": 30
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.06,
|
193 |
+
"learning_rate": 1.9999812486015525e-05,
|
194 |
+
"loss": 0.1348,
|
195 |
+
"step": 31
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.06,
|
199 |
+
"learning_rate": 1.9999249951094388e-05,
|
200 |
+
"loss": 0.3734,
|
201 |
+
"step": 32
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.06,
|
205 |
+
"learning_rate": 1.999831241633323e-05,
|
206 |
+
"loss": 0.3169,
|
207 |
+
"step": 33
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.06,
|
211 |
+
"learning_rate": 1.9996999916892222e-05,
|
212 |
+
"loss": 0.1066,
|
213 |
+
"step": 34
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.06,
|
217 |
+
"learning_rate": 1.9995312501993765e-05,
|
218 |
+
"loss": 0.4434,
|
219 |
+
"step": 35
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.07,
|
223 |
+
"learning_rate": 1.9993250234920638e-05,
|
224 |
+
"loss": 0.198,
|
225 |
+
"step": 36
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.07,
|
229 |
+
"learning_rate": 1.9990813193013625e-05,
|
230 |
+
"loss": 0.115,
|
231 |
+
"step": 37
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.07,
|
235 |
+
"learning_rate": 1.9988001467668613e-05,
|
236 |
+
"loss": 0.2676,
|
237 |
+
"step": 38
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.07,
|
241 |
+
"learning_rate": 1.9984815164333163e-05,
|
242 |
+
"loss": 0.2201,
|
243 |
+
"step": 39
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.07,
|
247 |
+
"learning_rate": 1.9981254402502568e-05,
|
248 |
+
"loss": 0.1945,
|
249 |
+
"step": 40
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.08,
|
253 |
+
"learning_rate": 1.997731931571535e-05,
|
254 |
+
"loss": 0.1391,
|
255 |
+
"step": 41
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.08,
|
259 |
+
"learning_rate": 1.9973010051548274e-05,
|
260 |
+
"loss": 0.2697,
|
261 |
+
"step": 42
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.08,
|
265 |
+
"learning_rate": 1.9968326771610797e-05,
|
266 |
+
"loss": 0.1562,
|
267 |
+
"step": 43
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.08,
|
271 |
+
"learning_rate": 1.9963269651539018e-05,
|
272 |
+
"loss": 0.2204,
|
273 |
+
"step": 44
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.08,
|
277 |
+
"learning_rate": 1.9957838880989076e-05,
|
278 |
+
"loss": 0.2729,
|
279 |
+
"step": 45
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.09,
|
283 |
+
"learning_rate": 1.9952034663630064e-05,
|
284 |
+
"loss": 0.441,
|
285 |
+
"step": 46
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.09,
|
289 |
+
"learning_rate": 1.9952034663630064e-05,
|
290 |
+
"loss": 0.1401,
|
291 |
+
"step": 47
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.09,
|
295 |
+
"learning_rate": 1.9945857217136365e-05,
|
296 |
+
"loss": 0.3727,
|
297 |
+
"step": 48
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.09,
|
301 |
+
"learning_rate": 1.9939306773179498e-05,
|
302 |
+
"loss": 0.3269,
|
303 |
+
"step": 49
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.09,
|
307 |
+
"learning_rate": 1.9932383577419432e-05,
|
308 |
+
"loss": 0.0801,
|
309 |
+
"step": 50
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.09,
|
313 |
+
"learning_rate": 1.9925087889495374e-05,
|
314 |
+
"loss": 0.2772,
|
315 |
+
"step": 51
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.1,
|
319 |
+
"learning_rate": 1.9917419983016025e-05,
|
320 |
+
"loss": 0.2253,
|
321 |
+
"step": 52
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.1,
|
325 |
+
"learning_rate": 1.9909380145549325e-05,
|
326 |
+
"loss": 0.2318,
|
327 |
+
"step": 53
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.1,
|
331 |
+
"learning_rate": 1.9900968678611664e-05,
|
332 |
+
"loss": 0.1809,
|
333 |
+
"step": 54
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.1,
|
337 |
+
"learning_rate": 1.989218589765658e-05,
|
338 |
+
"loss": 0.1155,
|
339 |
+
"step": 55
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1,
|
343 |
+
"learning_rate": 1.9883032132062926e-05,
|
344 |
+
"loss": 0.2356,
|
345 |
+
"step": 56
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.11,
|
349 |
+
"learning_rate": 1.9873507725122505e-05,
|
350 |
+
"loss": 0.1194,
|
351 |
+
"step": 57
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.11,
|
355 |
+
"learning_rate": 1.9863613034027224e-05,
|
356 |
+
"loss": 0.3272,
|
357 |
+
"step": 58
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.11,
|
361 |
+
"learning_rate": 1.985334842985567e-05,
|
362 |
+
"loss": 0.183,
|
363 |
+
"step": 59
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.11,
|
367 |
+
"learning_rate": 1.9842714297559212e-05,
|
368 |
+
"loss": 0.1217,
|
369 |
+
"step": 60
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.11,
|
373 |
+
"learning_rate": 1.9831711035947552e-05,
|
374 |
+
"loss": 0.1388,
|
375 |
+
"step": 61
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.11,
|
379 |
+
"learning_rate": 1.9820339057673773e-05,
|
380 |
+
"loss": 0.2112,
|
381 |
+
"step": 62
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.12,
|
385 |
+
"learning_rate": 1.9808598789218866e-05,
|
386 |
+
"loss": 0.0917,
|
387 |
+
"step": 63
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.12,
|
391 |
+
"learning_rate": 1.979649067087574e-05,
|
392 |
+
"loss": 0.1585,
|
393 |
+
"step": 64
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.12,
|
397 |
+
"learning_rate": 1.9784015156732693e-05,
|
398 |
+
"loss": 0.1446,
|
399 |
+
"step": 65
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.12,
|
403 |
+
"learning_rate": 1.97711727146564e-05,
|
404 |
+
"loss": 0.3511,
|
405 |
+
"step": 66
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.12,
|
409 |
+
"learning_rate": 1.9757963826274357e-05,
|
410 |
+
"loss": 0.1019,
|
411 |
+
"step": 67
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.13,
|
415 |
+
"learning_rate": 1.9744388986956824e-05,
|
416 |
+
"loss": 0.1165,
|
417 |
+
"step": 68
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.13,
|
421 |
+
"learning_rate": 1.973044870579824e-05,
|
422 |
+
"loss": 0.2189,
|
423 |
+
"step": 69
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.13,
|
427 |
+
"learning_rate": 1.971614350559814e-05,
|
428 |
+
"loss": 0.1254,
|
429 |
+
"step": 70
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.13,
|
433 |
+
"learning_rate": 1.970147392284154e-05,
|
434 |
+
"loss": 0.0627,
|
435 |
+
"step": 71
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.13,
|
439 |
+
"learning_rate": 1.9686440507678827e-05,
|
440 |
+
"loss": 0.0952,
|
441 |
+
"step": 72
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.13,
|
445 |
+
"learning_rate": 1.967104382390511e-05,
|
446 |
+
"loss": 0.1867,
|
447 |
+
"step": 73
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.14,
|
451 |
+
"learning_rate": 1.9655284448939094e-05,
|
452 |
+
"loss": 0.2003,
|
453 |
+
"step": 74
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.14,
|
457 |
+
"learning_rate": 1.9639162973801426e-05,
|
458 |
+
"loss": 0.1188,
|
459 |
+
"step": 75
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.14,
|
463 |
+
"learning_rate": 1.9622680003092503e-05,
|
464 |
+
"loss": 0.1111,
|
465 |
+
"step": 76
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.14,
|
469 |
+
"learning_rate": 1.960583615496984e-05,
|
470 |
+
"loss": 0.1203,
|
471 |
+
"step": 77
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.14,
|
475 |
+
"learning_rate": 1.9588632061124837e-05,
|
476 |
+
"loss": 0.1599,
|
477 |
+
"step": 78
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.15,
|
481 |
+
"learning_rate": 1.9571068366759143e-05,
|
482 |
+
"loss": 0.209,
|
483 |
+
"step": 79
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.15,
|
487 |
+
"learning_rate": 1.9553145730560415e-05,
|
488 |
+
"loss": 0.2183,
|
489 |
+
"step": 80
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.15,
|
493 |
+
"learning_rate": 1.953486482467764e-05,
|
494 |
+
"loss": 0.1351,
|
495 |
+
"step": 81
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.15,
|
499 |
+
"learning_rate": 1.951622633469592e-05,
|
500 |
+
"loss": 0.128,
|
501 |
+
"step": 82
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.15,
|
505 |
+
"learning_rate": 1.9497230959610757e-05,
|
506 |
+
"loss": 0.2241,
|
507 |
+
"step": 83
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.16,
|
511 |
+
"learning_rate": 1.9477879411801843e-05,
|
512 |
+
"loss": 0.0991,
|
513 |
+
"step": 84
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.16,
|
517 |
+
"learning_rate": 1.9458172417006347e-05,
|
518 |
+
"loss": 0.1165,
|
519 |
+
"step": 85
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.16,
|
523 |
+
"learning_rate": 1.9438110714291697e-05,
|
524 |
+
"loss": 0.0792,
|
525 |
+
"step": 86
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.16,
|
529 |
+
"learning_rate": 1.9417695056027847e-05,
|
530 |
+
"loss": 0.121,
|
531 |
+
"step": 87
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.16,
|
535 |
+
"learning_rate": 1.9396926207859085e-05,
|
536 |
+
"loss": 0.2727,
|
537 |
+
"step": 88
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.16,
|
541 |
+
"learning_rate": 1.9375804948675308e-05,
|
542 |
+
"loss": 0.1947,
|
543 |
+
"step": 89
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.17,
|
547 |
+
"learning_rate": 1.935433207058281e-05,
|
548 |
+
"loss": 0.2155,
|
549 |
+
"step": 90
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.17,
|
553 |
+
"learning_rate": 1.933250837887457e-05,
|
554 |
+
"loss": 0.0525,
|
555 |
+
"step": 91
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.17,
|
559 |
+
"learning_rate": 1.9310334692000077e-05,
|
560 |
+
"loss": 0.2401,
|
561 |
+
"step": 92
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.17,
|
565 |
+
"learning_rate": 1.9287811841534598e-05,
|
566 |
+
"loss": 0.0743,
|
567 |
+
"step": 93
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.17,
|
571 |
+
"learning_rate": 1.9264940672148018e-05,
|
572 |
+
"loss": 0.1659,
|
573 |
+
"step": 94
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.18,
|
577 |
+
"learning_rate": 1.9241722041573166e-05,
|
578 |
+
"loss": 0.1184,
|
579 |
+
"step": 95
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.18,
|
583 |
+
"learning_rate": 1.9218156820573618e-05,
|
584 |
+
"loss": 0.1207,
|
585 |
+
"step": 96
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.18,
|
589 |
+
"learning_rate": 1.9194245892911077e-05,
|
590 |
+
"loss": 0.1292,
|
591 |
+
"step": 97
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.18,
|
595 |
+
"learning_rate": 1.916999015531221e-05,
|
596 |
+
"loss": 0.2059,
|
597 |
+
"step": 98
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.18,
|
601 |
+
"learning_rate": 1.9145390517435013e-05,
|
602 |
+
"loss": 0.1682,
|
603 |
+
"step": 99
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.18,
|
607 |
+
"learning_rate": 1.9120447901834708e-05,
|
608 |
+
"loss": 0.1403,
|
609 |
+
"step": 100
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.19,
|
613 |
+
"learning_rate": 1.9095163243929143e-05,
|
614 |
+
"loss": 0.1752,
|
615 |
+
"step": 101
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.19,
|
619 |
+
"learning_rate": 1.906953749196371e-05,
|
620 |
+
"loss": 0.1616,
|
621 |
+
"step": 102
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.19,
|
625 |
+
"learning_rate": 1.9043571606975776e-05,
|
626 |
+
"loss": 0.1127,
|
627 |
+
"step": 103
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.19,
|
631 |
+
"learning_rate": 1.901726656275866e-05,
|
632 |
+
"loss": 0.2236,
|
633 |
+
"step": 104
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.19,
|
637 |
+
"learning_rate": 1.8990623345825084e-05,
|
638 |
+
"loss": 0.2308,
|
639 |
+
"step": 105
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.2,
|
643 |
+
"learning_rate": 1.8963642955370203e-05,
|
644 |
+
"loss": 0.1739,
|
645 |
+
"step": 106
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.2,
|
649 |
+
"learning_rate": 1.8936326403234125e-05,
|
650 |
+
"loss": 0.1762,
|
651 |
+
"step": 107
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.2,
|
655 |
+
"learning_rate": 1.890867471386395e-05,
|
656 |
+
"loss": 0.1457,
|
657 |
+
"step": 108
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.2,
|
661 |
+
"learning_rate": 1.888068892427538e-05,
|
662 |
+
"loss": 0.2768,
|
663 |
+
"step": 109
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.2,
|
667 |
+
"learning_rate": 1.8852370084013783e-05,
|
668 |
+
"loss": 0.1389,
|
669 |
+
"step": 110
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.21,
|
673 |
+
"learning_rate": 1.882371925511488e-05,
|
674 |
+
"loss": 0.2747,
|
675 |
+
"step": 111
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.21,
|
679 |
+
"learning_rate": 1.879473751206489e-05,
|
680 |
+
"loss": 0.0542,
|
681 |
+
"step": 112
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.21,
|
685 |
+
"learning_rate": 1.8765425941760237e-05,
|
686 |
+
"loss": 0.1414,
|
687 |
+
"step": 113
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.21,
|
691 |
+
"learning_rate": 1.8735785643466786e-05,
|
692 |
+
"loss": 0.2482,
|
693 |
+
"step": 114
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.21,
|
697 |
+
"learning_rate": 1.8705817728778626e-05,
|
698 |
+
"loss": 0.1602,
|
699 |
+
"step": 115
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.21,
|
703 |
+
"learning_rate": 1.867552332157637e-05,
|
704 |
+
"loss": 0.1342,
|
705 |
+
"step": 116
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.22,
|
709 |
+
"learning_rate": 1.8644903557985027e-05,
|
710 |
+
"loss": 0.077,
|
711 |
+
"step": 117
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.22,
|
715 |
+
"learning_rate": 1.8613959586331364e-05,
|
716 |
+
"loss": 0.0818,
|
717 |
+
"step": 118
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.22,
|
721 |
+
"learning_rate": 1.8582692567100866e-05,
|
722 |
+
"loss": 0.1443,
|
723 |
+
"step": 119
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.22,
|
727 |
+
"learning_rate": 1.855110367289421e-05,
|
728 |
+
"loss": 0.1148,
|
729 |
+
"step": 120
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.22,
|
733 |
+
"learning_rate": 1.851919408838327e-05,
|
734 |
+
"loss": 0.1661,
|
735 |
+
"step": 121
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.23,
|
739 |
+
"learning_rate": 1.8486965010266726e-05,
|
740 |
+
"loss": 0.1676,
|
741 |
+
"step": 122
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.23,
|
745 |
+
"learning_rate": 1.845441764722514e-05,
|
746 |
+
"loss": 0.1288,
|
747 |
+
"step": 123
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.23,
|
751 |
+
"learning_rate": 1.842155321987566e-05,
|
752 |
+
"loss": 0.0725,
|
753 |
+
"step": 124
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.23,
|
757 |
+
"learning_rate": 1.8388372960726228e-05,
|
758 |
+
"loss": 0.1258,
|
759 |
+
"step": 125
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.23,
|
763 |
+
"learning_rate": 1.8354878114129368e-05,
|
764 |
+
"loss": 0.068,
|
765 |
+
"step": 126
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.23,
|
769 |
+
"learning_rate": 1.8321069936235503e-05,
|
770 |
+
"loss": 0.1698,
|
771 |
+
"step": 127
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.24,
|
775 |
+
"learning_rate": 1.8286949694945864e-05,
|
776 |
+
"loss": 0.2038,
|
777 |
+
"step": 128
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.24,
|
781 |
+
"learning_rate": 1.8252518669864935e-05,
|
782 |
+
"loss": 0.0274,
|
783 |
+
"step": 129
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.24,
|
787 |
+
"learning_rate": 1.821777815225245e-05,
|
788 |
+
"loss": 0.0564,
|
789 |
+
"step": 130
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.24,
|
793 |
+
"learning_rate": 1.8182729444974993e-05,
|
794 |
+
"loss": 0.1182,
|
795 |
+
"step": 131
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.24,
|
799 |
+
"learning_rate": 1.8147373862457107e-05,
|
800 |
+
"loss": 0.3175,
|
801 |
+
"step": 132
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.25,
|
805 |
+
"learning_rate": 1.8111712730632024e-05,
|
806 |
+
"loss": 0.1017,
|
807 |
+
"step": 133
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.25,
|
811 |
+
"learning_rate": 1.807574738689193e-05,
|
812 |
+
"loss": 0.3348,
|
813 |
+
"step": 134
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.25,
|
817 |
+
"learning_rate": 1.8039479180037803e-05,
|
818 |
+
"loss": 0.3129,
|
819 |
+
"step": 135
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.25,
|
823 |
+
"learning_rate": 1.800290947022884e-05,
|
824 |
+
"loss": 0.1095,
|
825 |
+
"step": 136
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.25,
|
829 |
+
"learning_rate": 1.7966039628931447e-05,
|
830 |
+
"loss": 0.1922,
|
831 |
+
"step": 137
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.26,
|
835 |
+
"learning_rate": 1.7928871038867785e-05,
|
836 |
+
"loss": 0.1022,
|
837 |
+
"step": 138
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.26,
|
841 |
+
"learning_rate": 1.789140509396394e-05,
|
842 |
+
"loss": 0.2318,
|
843 |
+
"step": 139
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.26,
|
847 |
+
"learning_rate": 1.7853643199297632e-05,
|
848 |
+
"loss": 0.2374,
|
849 |
+
"step": 140
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.26,
|
853 |
+
"learning_rate": 1.7815586771045535e-05,
|
854 |
+
"loss": 0.1194,
|
855 |
+
"step": 141
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.26,
|
859 |
+
"learning_rate": 1.777723723643014e-05,
|
860 |
+
"loss": 0.1914,
|
861 |
+
"step": 142
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.26,
|
865 |
+
"learning_rate": 1.773859603366626e-05,
|
866 |
+
"loss": 0.0431,
|
867 |
+
"step": 143
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.27,
|
871 |
+
"learning_rate": 1.769966461190707e-05,
|
872 |
+
"loss": 0.081,
|
873 |
+
"step": 144
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.27,
|
877 |
+
"learning_rate": 1.766044443118978e-05,
|
878 |
+
"loss": 0.2162,
|
879 |
+
"step": 145
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.27,
|
883 |
+
"learning_rate": 1.762093696238086e-05,
|
884 |
+
"loss": 0.1151,
|
885 |
+
"step": 146
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.27,
|
889 |
+
"learning_rate": 1.7581143687120877e-05,
|
890 |
+
"loss": 0.184,
|
891 |
+
"step": 147
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.27,
|
895 |
+
"learning_rate": 1.7541066097768965e-05,
|
896 |
+
"loss": 0.1963,
|
897 |
+
"step": 148
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.28,
|
901 |
+
"learning_rate": 1.750070569734681e-05,
|
902 |
+
"loss": 0.1318,
|
903 |
+
"step": 149
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.28,
|
907 |
+
"learning_rate": 1.7460063999482314e-05,
|
908 |
+
"loss": 0.1163,
|
909 |
+
"step": 150
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.28,
|
913 |
+
"learning_rate": 1.7419142528352815e-05,
|
914 |
+
"loss": 0.1013,
|
915 |
+
"step": 151
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.28,
|
919 |
+
"learning_rate": 1.737794281862794e-05,
|
920 |
+
"loss": 0.0957,
|
921 |
+
"step": 152
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.28,
|
925 |
+
"learning_rate": 1.7336466415412028e-05,
|
926 |
+
"loss": 0.2023,
|
927 |
+
"step": 153
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.28,
|
931 |
+
"learning_rate": 1.729471487418621e-05,
|
932 |
+
"loss": 0.1398,
|
933 |
+
"step": 154
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.29,
|
937 |
+
"learning_rate": 1.7252689760750053e-05,
|
938 |
+
"loss": 0.1238,
|
939 |
+
"step": 155
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.29,
|
943 |
+
"learning_rate": 1.721039265116285e-05,
|
944 |
+
"loss": 0.2201,
|
945 |
+
"step": 156
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.29,
|
949 |
+
"learning_rate": 1.7167825131684516e-05,
|
950 |
+
"loss": 0.0698,
|
951 |
+
"step": 157
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.29,
|
955 |
+
"learning_rate": 1.7124988798716084e-05,
|
956 |
+
"loss": 0.0312,
|
957 |
+
"step": 158
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.29,
|
961 |
+
"learning_rate": 1.7081885258739846e-05,
|
962 |
+
"loss": 0.1443,
|
963 |
+
"step": 159
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.3,
|
967 |
+
"learning_rate": 1.7038516128259118e-05,
|
968 |
+
"loss": 0.1349,
|
969 |
+
"step": 160
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.3,
|
973 |
+
"learning_rate": 1.6994883033737582e-05,
|
974 |
+
"loss": 0.0751,
|
975 |
+
"step": 161
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.3,
|
979 |
+
"learning_rate": 1.695098761153832e-05,
|
980 |
+
"loss": 0.0543,
|
981 |
+
"step": 162
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.3,
|
985 |
+
"learning_rate": 1.6906831507862446e-05,
|
986 |
+
"loss": 0.0533,
|
987 |
+
"step": 163
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.3,
|
991 |
+
"learning_rate": 1.686241637868734e-05,
|
992 |
+
"loss": 0.1328,
|
993 |
+
"step": 164
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.3,
|
997 |
+
"learning_rate": 1.6817743889704564e-05,
|
998 |
+
"loss": 0.3057,
|
999 |
+
"step": 165
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.31,
|
1003 |
+
"learning_rate": 1.6772815716257414e-05,
|
1004 |
+
"loss": 0.1642,
|
1005 |
+
"step": 166
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.31,
|
1009 |
+
"learning_rate": 1.672763354327804e-05,
|
1010 |
+
"loss": 0.1479,
|
1011 |
+
"step": 167
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.31,
|
1015 |
+
"learning_rate": 1.6682199065224307e-05,
|
1016 |
+
"loss": 0.1163,
|
1017 |
+
"step": 168
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.31,
|
1021 |
+
"learning_rate": 1.6636513986016215e-05,
|
1022 |
+
"loss": 0.0395,
|
1023 |
+
"step": 169
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.31,
|
1027 |
+
"learning_rate": 1.6590580018972012e-05,
|
1028 |
+
"loss": 0.0456,
|
1029 |
+
"step": 170
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.32,
|
1033 |
+
"learning_rate": 1.6544398886743934e-05,
|
1034 |
+
"loss": 0.2018,
|
1035 |
+
"step": 171
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.32,
|
1039 |
+
"learning_rate": 1.64979723212536e-05,
|
1040 |
+
"loss": 0.1655,
|
1041 |
+
"step": 172
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.32,
|
1045 |
+
"learning_rate": 1.6451302063627067e-05,
|
1046 |
+
"loss": 0.1805,
|
1047 |
+
"step": 173
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.32,
|
1051 |
+
"learning_rate": 1.6404389864129533e-05,
|
1052 |
+
"loss": 0.2445,
|
1053 |
+
"step": 174
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.32,
|
1057 |
+
"learning_rate": 1.6357237482099682e-05,
|
1058 |
+
"loss": 0.134,
|
1059 |
+
"step": 175
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.33,
|
1063 |
+
"learning_rate": 1.6309846685883726e-05,
|
1064 |
+
"loss": 0.0976,
|
1065 |
+
"step": 176
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.33,
|
1069 |
+
"learning_rate": 1.6262219252769065e-05,
|
1070 |
+
"loss": 0.0984,
|
1071 |
+
"step": 177
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.33,
|
1075 |
+
"learning_rate": 1.621435696891765e-05,
|
1076 |
+
"loss": 0.0495,
|
1077 |
+
"step": 178
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.33,
|
1081 |
+
"learning_rate": 1.6166261629298996e-05,
|
1082 |
+
"loss": 0.1005,
|
1083 |
+
"step": 179
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.33,
|
1087 |
+
"learning_rate": 1.6117935037622848e-05,
|
1088 |
+
"loss": 0.1399,
|
1089 |
+
"step": 180
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.33,
|
1093 |
+
"learning_rate": 1.606937900627157e-05,
|
1094 |
+
"loss": 0.2105,
|
1095 |
+
"step": 181
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.34,
|
1099 |
+
"learning_rate": 1.6020595356232137e-05,
|
1100 |
+
"loss": 0.142,
|
1101 |
+
"step": 182
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.34,
|
1105 |
+
"learning_rate": 1.5971585917027864e-05,
|
1106 |
+
"loss": 0.0791,
|
1107 |
+
"step": 183
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.34,
|
1111 |
+
"learning_rate": 1.5922352526649803e-05,
|
1112 |
+
"loss": 0.2,
|
1113 |
+
"step": 184
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.34,
|
1117 |
+
"learning_rate": 1.587289703148779e-05,
|
1118 |
+
"loss": 0.1317,
|
1119 |
+
"step": 185
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.34,
|
1123 |
+
"learning_rate": 1.5823221286261217e-05,
|
1124 |
+
"loss": 0.1656,
|
1125 |
+
"step": 186
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.35,
|
1129 |
+
"learning_rate": 1.5773327153949465e-05,
|
1130 |
+
"loss": 0.3358,
|
1131 |
+
"step": 187
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.35,
|
1135 |
+
"learning_rate": 1.572321650572205e-05,
|
1136 |
+
"loss": 0.2216,
|
1137 |
+
"step": 188
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.35,
|
1141 |
+
"learning_rate": 1.567289122086843e-05,
|
1142 |
+
"loss": 0.0937,
|
1143 |
+
"step": 189
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.35,
|
1147 |
+
"learning_rate": 1.5622353186727542e-05,
|
1148 |
+
"loss": 0.0995,
|
1149 |
+
"step": 190
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.35,
|
1153 |
+
"learning_rate": 1.557160429861702e-05,
|
1154 |
+
"loss": 0.2324,
|
1155 |
+
"step": 191
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 0.35,
|
1159 |
+
"learning_rate": 1.5520646459762102e-05,
|
1160 |
+
"loss": 0.2847,
|
1161 |
+
"step": 192
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.36,
|
1165 |
+
"learning_rate": 1.5469481581224274e-05,
|
1166 |
+
"loss": 0.1242,
|
1167 |
+
"step": 193
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.36,
|
1171 |
+
"learning_rate": 1.5418111581829575e-05,
|
1172 |
+
"loss": 0.1771,
|
1173 |
+
"step": 194
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.36,
|
1177 |
+
"learning_rate": 1.536653838809667e-05,
|
1178 |
+
"loss": 0.2115,
|
1179 |
+
"step": 195
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.36,
|
1183 |
+
"learning_rate": 1.531476393416456e-05,
|
1184 |
+
"loss": 0.074,
|
1185 |
+
"step": 196
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.36,
|
1189 |
+
"learning_rate": 1.5262790161720082e-05,
|
1190 |
+
"loss": 0.0893,
|
1191 |
+
"step": 197
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.37,
|
1195 |
+
"learning_rate": 1.5210619019925066e-05,
|
1196 |
+
"loss": 0.0644,
|
1197 |
+
"step": 198
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.37,
|
1201 |
+
"learning_rate": 1.5158252465343242e-05,
|
1202 |
+
"loss": 0.2146,
|
1203 |
+
"step": 199
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.37,
|
1207 |
+
"learning_rate": 1.5105692461866874e-05,
|
1208 |
+
"loss": 0.2579,
|
1209 |
+
"step": 200
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.37,
|
1213 |
+
"learning_rate": 1.50529409806431e-05,
|
1214 |
+
"loss": 0.0806,
|
1215 |
+
"step": 201
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.37,
|
1219 |
+
"learning_rate": 1.5000000000000002e-05,
|
1220 |
+
"loss": 0.0806,
|
1221 |
+
"step": 202
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.38,
|
1225 |
+
"learning_rate": 1.4946871505372426e-05,
|
1226 |
+
"loss": 0.132,
|
1227 |
+
"step": 203
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.38,
|
1231 |
+
"learning_rate": 1.4893557489227518e-05,
|
1232 |
+
"loss": 0.1438,
|
1233 |
+
"step": 204
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.38,
|
1237 |
+
"learning_rate": 1.4840059950989992e-05,
|
1238 |
+
"loss": 0.1703,
|
1239 |
+
"step": 205
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.38,
|
1243 |
+
"learning_rate": 1.478638089696716e-05,
|
1244 |
+
"loss": 0.0903,
|
1245 |
+
"step": 206
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.38,
|
1249 |
+
"learning_rate": 1.4732522340273686e-05,
|
1250 |
+
"loss": 0.1515,
|
1251 |
+
"step": 207
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.38,
|
1255 |
+
"learning_rate": 1.467848630075608e-05,
|
1256 |
+
"loss": 0.2156,
|
1257 |
+
"step": 208
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.39,
|
1261 |
+
"learning_rate": 1.4624274804916958e-05,
|
1262 |
+
"loss": 0.0783,
|
1263 |
+
"step": 209
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.39,
|
1267 |
+
"learning_rate": 1.456988988583904e-05,
|
1268 |
+
"loss": 0.1432,
|
1269 |
+
"step": 210
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.39,
|
1273 |
+
"learning_rate": 1.4515333583108896e-05,
|
1274 |
+
"loss": 0.1716,
|
1275 |
+
"step": 211
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.39,
|
1279 |
+
"learning_rate": 1.4460607942740468e-05,
|
1280 |
+
"loss": 0.2328,
|
1281 |
+
"step": 212
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.39,
|
1285 |
+
"learning_rate": 1.4405715017098333e-05,
|
1286 |
+
"loss": 0.1317,
|
1287 |
+
"step": 213
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.4,
|
1291 |
+
"learning_rate": 1.4350656864820733e-05,
|
1292 |
+
"loss": 0.097,
|
1293 |
+
"step": 214
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.4,
|
1297 |
+
"learning_rate": 1.4295435550742372e-05,
|
1298 |
+
"loss": 0.1547,
|
1299 |
+
"step": 215
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.4,
|
1303 |
+
"learning_rate": 1.4240053145816968e-05,
|
1304 |
+
"loss": 0.0737,
|
1305 |
+
"step": 216
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.4,
|
1309 |
+
"learning_rate": 1.4184511727039612e-05,
|
1310 |
+
"loss": 0.0926,
|
1311 |
+
"step": 217
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.4,
|
1315 |
+
"learning_rate": 1.4128813377368851e-05,
|
1316 |
+
"loss": 0.0824,
|
1317 |
+
"step": 218
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.4,
|
1321 |
+
"learning_rate": 1.4072960185648576e-05,
|
1322 |
+
"loss": 0.1236,
|
1323 |
+
"step": 219
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.41,
|
1327 |
+
"learning_rate": 1.4016954246529697e-05,
|
1328 |
+
"loss": 0.157,
|
1329 |
+
"step": 220
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.41,
|
1333 |
+
"learning_rate": 1.396079766039157e-05,
|
1334 |
+
"loss": 0.1241,
|
1335 |
+
"step": 221
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.41,
|
1339 |
+
"learning_rate": 1.3904492533263243e-05,
|
1340 |
+
"loss": 0.1243,
|
1341 |
+
"step": 222
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.41,
|
1345 |
+
"learning_rate": 1.3848040976744459e-05,
|
1346 |
+
"loss": 0.1429,
|
1347 |
+
"step": 223
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.41,
|
1351 |
+
"learning_rate": 1.3791445107926478e-05,
|
1352 |
+
"loss": 0.0321,
|
1353 |
+
"step": 224
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.42,
|
1357 |
+
"learning_rate": 1.3734707049312674e-05,
|
1358 |
+
"loss": 0.0398,
|
1359 |
+
"step": 225
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.42,
|
1363 |
+
"learning_rate": 1.3677828928738934e-05,
|
1364 |
+
"loss": 0.2625,
|
1365 |
+
"step": 226
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.42,
|
1369 |
+
"learning_rate": 1.3620812879293864e-05,
|
1370 |
+
"loss": 0.0926,
|
1371 |
+
"step": 227
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.42,
|
1375 |
+
"learning_rate": 1.3563661039238785e-05,
|
1376 |
+
"loss": 0.06,
|
1377 |
+
"step": 228
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.42,
|
1381 |
+
"learning_rate": 1.3506375551927546e-05,
|
1382 |
+
"loss": 0.2397,
|
1383 |
+
"step": 229
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.43,
|
1387 |
+
"learning_rate": 1.3448958565726144e-05,
|
1388 |
+
"loss": 0.157,
|
1389 |
+
"step": 230
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.43,
|
1393 |
+
"learning_rate": 1.3391412233932148e-05,
|
1394 |
+
"loss": 0.1105,
|
1395 |
+
"step": 231
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.43,
|
1399 |
+
"learning_rate": 1.3333738714693958e-05,
|
1400 |
+
"loss": 0.0877,
|
1401 |
+
"step": 232
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 0.43,
|
1405 |
+
"learning_rate": 1.3275940170929845e-05,
|
1406 |
+
"loss": 0.1821,
|
1407 |
+
"step": 233
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.43,
|
1411 |
+
"learning_rate": 1.3218018770246858e-05,
|
1412 |
+
"loss": 0.0166,
|
1413 |
+
"step": 234
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.43,
|
1417 |
+
"learning_rate": 1.3159976684859528e-05,
|
1418 |
+
"loss": 0.118,
|
1419 |
+
"step": 235
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.44,
|
1423 |
+
"learning_rate": 1.3101816091508389e-05,
|
1424 |
+
"loss": 0.2289,
|
1425 |
+
"step": 236
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 0.44,
|
1429 |
+
"learning_rate": 1.3043539171378362e-05,
|
1430 |
+
"loss": 0.0518,
|
1431 |
+
"step": 237
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.44,
|
1435 |
+
"learning_rate": 1.2985148110016947e-05,
|
1436 |
+
"loss": 0.1012,
|
1437 |
+
"step": 238
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.44,
|
1441 |
+
"learning_rate": 1.292664509725226e-05,
|
1442 |
+
"loss": 0.2009,
|
1443 |
+
"step": 239
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.44,
|
1447 |
+
"learning_rate": 1.2868032327110904e-05,
|
1448 |
+
"loss": 0.252,
|
1449 |
+
"step": 240
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.45,
|
1453 |
+
"learning_rate": 1.2809311997735697e-05,
|
1454 |
+
"loss": 0.2044,
|
1455 |
+
"step": 241
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 0.45,
|
1459 |
+
"learning_rate": 1.2750486311303218e-05,
|
1460 |
+
"loss": 0.1908,
|
1461 |
+
"step": 242
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.45,
|
1465 |
+
"learning_rate": 1.2691557473941246e-05,
|
1466 |
+
"loss": 0.3064,
|
1467 |
+
"step": 243
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.45,
|
1471 |
+
"learning_rate": 1.2632527695645993e-05,
|
1472 |
+
"loss": 0.091,
|
1473 |
+
"step": 244
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.45,
|
1477 |
+
"learning_rate": 1.257339919019925e-05,
|
1478 |
+
"loss": 0.0606,
|
1479 |
+
"step": 245
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.45,
|
1483 |
+
"learning_rate": 1.2514174175085346e-05,
|
1484 |
+
"loss": 0.147,
|
1485 |
+
"step": 246
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.46,
|
1489 |
+
"learning_rate": 1.2454854871407993e-05,
|
1490 |
+
"loss": 0.2029,
|
1491 |
+
"step": 247
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.46,
|
1495 |
+
"learning_rate": 1.239544350380699e-05,
|
1496 |
+
"loss": 0.0851,
|
1497 |
+
"step": 248
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 0.46,
|
1501 |
+
"learning_rate": 1.2335942300374788e-05,
|
1502 |
+
"loss": 0.0904,
|
1503 |
+
"step": 249
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.46,
|
1507 |
+
"learning_rate": 1.2276353492572937e-05,
|
1508 |
+
"loss": 0.0721,
|
1509 |
+
"step": 250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.46,
|
1513 |
+
"learning_rate": 1.2216679315148388e-05,
|
1514 |
+
"loss": 0.1488,
|
1515 |
+
"step": 251
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 0.47,
|
1519 |
+
"learning_rate": 1.2156922006049703e-05,
|
1520 |
+
"loss": 0.1927,
|
1521 |
+
"step": 252
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.47,
|
1525 |
+
"learning_rate": 1.2097083806343104e-05,
|
1526 |
+
"loss": 0.029,
|
1527 |
+
"step": 253
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.47,
|
1531 |
+
"learning_rate": 1.2037166960128443e-05,
|
1532 |
+
"loss": 0.0301,
|
1533 |
+
"step": 254
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.47,
|
1537 |
+
"learning_rate": 1.1977173714455034e-05,
|
1538 |
+
"loss": 0.1231,
|
1539 |
+
"step": 255
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.47,
|
1543 |
+
"learning_rate": 1.1917106319237386e-05,
|
1544 |
+
"loss": 0.0348,
|
1545 |
+
"step": 256
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.48,
|
1549 |
+
"learning_rate": 1.1856967027170818e-05,
|
1550 |
+
"loss": 0.0869,
|
1551 |
+
"step": 257
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 0.48,
|
1555 |
+
"learning_rate": 1.1796758093646989e-05,
|
1556 |
+
"loss": 0.1164,
|
1557 |
+
"step": 258
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.48,
|
1561 |
+
"learning_rate": 1.1736481776669307e-05,
|
1562 |
+
"loss": 0.0388,
|
1563 |
+
"step": 259
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.48,
|
1567 |
+
"learning_rate": 1.1676140336768236e-05,
|
1568 |
+
"loss": 0.0433,
|
1569 |
+
"step": 260
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.48,
|
1573 |
+
"learning_rate": 1.161573603691655e-05,
|
1574 |
+
"loss": 0.1996,
|
1575 |
+
"step": 261
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.48,
|
1579 |
+
"learning_rate": 1.1555271142444433e-05,
|
1580 |
+
"loss": 0.2182,
|
1581 |
+
"step": 262
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 0.49,
|
1585 |
+
"learning_rate": 1.1494747920954545e-05,
|
1586 |
+
"loss": 0.0509,
|
1587 |
+
"step": 263
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.49,
|
1591 |
+
"learning_rate": 1.1434168642236964e-05,
|
1592 |
+
"loss": 0.1078,
|
1593 |
+
"step": 264
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.49,
|
1597 |
+
"learning_rate": 1.1373535578184083e-05,
|
1598 |
+
"loss": 0.0412,
|
1599 |
+
"step": 265
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.49,
|
1603 |
+
"learning_rate": 1.1312851002705383e-05,
|
1604 |
+
"loss": 0.2425,
|
1605 |
+
"step": 266
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.49,
|
1609 |
+
"learning_rate": 1.1252117191642175e-05,
|
1610 |
+
"loss": 0.1119,
|
1611 |
+
"step": 267
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.5,
|
1615 |
+
"learning_rate": 1.1191336422682237e-05,
|
1616 |
+
"loss": 0.0455,
|
1617 |
+
"step": 268
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.5,
|
1621 |
+
"learning_rate": 1.1130510975274408e-05,
|
1622 |
+
"loss": 0.2613,
|
1623 |
+
"step": 269
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 0.5,
|
1627 |
+
"learning_rate": 1.1069643130543084e-05,
|
1628 |
+
"loss": 0.0651,
|
1629 |
+
"step": 270
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.5,
|
1633 |
+
"learning_rate": 1.1008735171202685e-05,
|
1634 |
+
"loss": 0.1155,
|
1635 |
+
"step": 271
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 0.5,
|
1639 |
+
"learning_rate": 1.0947789381472035e-05,
|
1640 |
+
"loss": 0.0661,
|
1641 |
+
"step": 272
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.5,
|
1645 |
+
"learning_rate": 1.0886808046988716e-05,
|
1646 |
+
"loss": 0.0881,
|
1647 |
+
"step": 273
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.51,
|
1651 |
+
"learning_rate": 1.0825793454723325e-05,
|
1652 |
+
"loss": 0.1123,
|
1653 |
+
"step": 274
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 0.51,
|
1657 |
+
"learning_rate": 1.0764747892893724e-05,
|
1658 |
+
"loss": 0.14,
|
1659 |
+
"step": 275
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.51,
|
1663 |
+
"learning_rate": 1.0703673650879219e-05,
|
1664 |
+
"loss": 0.0889,
|
1665 |
+
"step": 276
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.51,
|
1669 |
+
"learning_rate": 1.0642573019134703e-05,
|
1670 |
+
"loss": 0.1333,
|
1671 |
+
"step": 277
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.51,
|
1675 |
+
"learning_rate": 1.0581448289104759e-05,
|
1676 |
+
"loss": 0.0608,
|
1677 |
+
"step": 278
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.52,
|
1681 |
+
"learning_rate": 1.0520301753137725e-05,
|
1682 |
+
"loss": 0.2882,
|
1683 |
+
"step": 279
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.52,
|
1687 |
+
"learning_rate": 1.045913570439972e-05,
|
1688 |
+
"loss": 0.0661,
|
1689 |
+
"step": 280
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.52,
|
1693 |
+
"learning_rate": 1.0397952436788643e-05,
|
1694 |
+
"loss": 0.107,
|
1695 |
+
"step": 281
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 0.52,
|
1699 |
+
"learning_rate": 1.0336754244848156e-05,
|
1700 |
+
"loss": 0.0499,
|
1701 |
+
"step": 282
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.52,
|
1705 |
+
"learning_rate": 1.0275543423681622e-05,
|
1706 |
+
"loss": 0.237,
|
1707 |
+
"step": 283
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 0.52,
|
1711 |
+
"learning_rate": 1.0214322268866033e-05,
|
1712 |
+
"loss": 0.0301,
|
1713 |
+
"step": 284
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.53,
|
1717 |
+
"learning_rate": 1.0153093076365923e-05,
|
1718 |
+
"loss": 0.0904,
|
1719 |
+
"step": 285
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.53,
|
1723 |
+
"learning_rate": 1.0091858142447266e-05,
|
1724 |
+
"loss": 0.0165,
|
1725 |
+
"step": 286
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.53,
|
1729 |
+
"learning_rate": 1.0030619763591348e-05,
|
1730 |
+
"loss": 0.0791,
|
1731 |
+
"step": 287
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.53,
|
1735 |
+
"learning_rate": 9.969380236408656e-06,
|
1736 |
+
"loss": 0.1997,
|
1737 |
+
"step": 288
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 0.53,
|
1741 |
+
"learning_rate": 9.908141857552737e-06,
|
1742 |
+
"loss": 0.0155,
|
1743 |
+
"step": 289
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.54,
|
1747 |
+
"learning_rate": 9.846906923634079e-06,
|
1748 |
+
"loss": 0.0457,
|
1749 |
+
"step": 290
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.54,
|
1753 |
+
"learning_rate": 9.785677731133972e-06,
|
1754 |
+
"loss": 0.0203,
|
1755 |
+
"step": 291
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.54,
|
1759 |
+
"learning_rate": 9.724456576318383e-06,
|
1760 |
+
"loss": 0.2384,
|
1761 |
+
"step": 292
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.54,
|
1765 |
+
"learning_rate": 9.663245755151847e-06,
|
1766 |
+
"loss": 0.1459,
|
1767 |
+
"step": 293
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 0.54,
|
1771 |
+
"learning_rate": 9.602047563211359e-06,
|
1772 |
+
"loss": 0.2249,
|
1773 |
+
"step": 294
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.55,
|
1777 |
+
"learning_rate": 9.540864295600282e-06,
|
1778 |
+
"loss": 0.037,
|
1779 |
+
"step": 295
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.55,
|
1783 |
+
"learning_rate": 9.479698246862277e-06,
|
1784 |
+
"loss": 0.145,
|
1785 |
+
"step": 296
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.55,
|
1789 |
+
"learning_rate": 9.418551710895243e-06,
|
1790 |
+
"loss": 0.1501,
|
1791 |
+
"step": 297
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 0.55,
|
1795 |
+
"learning_rate": 9.3574269808653e-06,
|
1796 |
+
"loss": 0.0727,
|
1797 |
+
"step": 298
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.55,
|
1801 |
+
"learning_rate": 9.296326349120786e-06,
|
1802 |
+
"loss": 0.0992,
|
1803 |
+
"step": 299
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.55,
|
1807 |
+
"learning_rate": 9.23525210710628e-06,
|
1808 |
+
"loss": 0.2516,
|
1809 |
+
"step": 300
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.56,
|
1813 |
+
"learning_rate": 9.174206545276678e-06,
|
1814 |
+
"loss": 0.0628,
|
1815 |
+
"step": 301
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.56,
|
1819 |
+
"learning_rate": 9.113191953011287e-06,
|
1820 |
+
"loss": 0.132,
|
1821 |
+
"step": 302
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.56,
|
1825 |
+
"learning_rate": 9.052210618527966e-06,
|
1826 |
+
"loss": 0.0908,
|
1827 |
+
"step": 303
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.56,
|
1831 |
+
"learning_rate": 8.991264828797319e-06,
|
1832 |
+
"loss": 0.1432,
|
1833 |
+
"step": 304
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 0.56,
|
1837 |
+
"learning_rate": 8.93035686945692e-06,
|
1838 |
+
"loss": 0.0493,
|
1839 |
+
"step": 305
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.57,
|
1843 |
+
"learning_rate": 8.869489024725595e-06,
|
1844 |
+
"loss": 0.0578,
|
1845 |
+
"step": 306
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.57,
|
1849 |
+
"learning_rate": 8.808663577317765e-06,
|
1850 |
+
"loss": 0.0909,
|
1851 |
+
"step": 307
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 0.57,
|
1855 |
+
"learning_rate": 8.747882808357828e-06,
|
1856 |
+
"loss": 0.0646,
|
1857 |
+
"step": 308
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.57,
|
1861 |
+
"learning_rate": 8.687148997294622e-06,
|
1862 |
+
"loss": 0.1308,
|
1863 |
+
"step": 309
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 0.57,
|
1867 |
+
"learning_rate": 8.626464421815919e-06,
|
1868 |
+
"loss": 0.0729,
|
1869 |
+
"step": 310
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.57,
|
1873 |
+
"learning_rate": 8.565831357763039e-06,
|
1874 |
+
"loss": 0.1871,
|
1875 |
+
"step": 311
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 0.58,
|
1879 |
+
"learning_rate": 8.505252079045459e-06,
|
1880 |
+
"loss": 0.1577,
|
1881 |
+
"step": 312
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 0.58,
|
1885 |
+
"learning_rate": 8.444728857555572e-06,
|
1886 |
+
"loss": 0.1844,
|
1887 |
+
"step": 313
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.58,
|
1891 |
+
"learning_rate": 8.384263963083453e-06,
|
1892 |
+
"loss": 0.1673,
|
1893 |
+
"step": 314
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.58,
|
1897 |
+
"learning_rate": 8.323859663231768e-06,
|
1898 |
+
"loss": 0.1898,
|
1899 |
+
"step": 315
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.58,
|
1903 |
+
"learning_rate": 8.263518223330698e-06,
|
1904 |
+
"loss": 0.1106,
|
1905 |
+
"step": 316
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 0.59,
|
1909 |
+
"learning_rate": 8.203241906353014e-06,
|
1910 |
+
"loss": 0.0476,
|
1911 |
+
"step": 317
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.59,
|
1915 |
+
"learning_rate": 8.143032972829184e-06,
|
1916 |
+
"loss": 0.1432,
|
1917 |
+
"step": 318
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 0.59,
|
1921 |
+
"learning_rate": 8.082893680762619e-06,
|
1922 |
+
"loss": 0.0249,
|
1923 |
+
"step": 319
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 0.59,
|
1927 |
+
"learning_rate": 8.022826285544967e-06,
|
1928 |
+
"loss": 0.0762,
|
1929 |
+
"step": 320
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.59,
|
1933 |
+
"learning_rate": 7.962833039871562e-06,
|
1934 |
+
"loss": 0.1468,
|
1935 |
+
"step": 321
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 0.6,
|
1939 |
+
"learning_rate": 7.902916193656898e-06,
|
1940 |
+
"loss": 0.0272,
|
1941 |
+
"step": 322
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.6,
|
1945 |
+
"learning_rate": 7.843077993950302e-06,
|
1946 |
+
"loss": 0.0495,
|
1947 |
+
"step": 323
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 0.6,
|
1951 |
+
"learning_rate": 7.783320684851613e-06,
|
1952 |
+
"loss": 0.1958,
|
1953 |
+
"step": 324
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.6,
|
1957 |
+
"learning_rate": 7.72364650742707e-06,
|
1958 |
+
"loss": 0.0869,
|
1959 |
+
"step": 325
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 0.6,
|
1963 |
+
"learning_rate": 7.664057699625215e-06,
|
1964 |
+
"loss": 0.2957,
|
1965 |
+
"step": 326
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 0.6,
|
1969 |
+
"learning_rate": 7.604556496193015e-06,
|
1970 |
+
"loss": 0.0833,
|
1971 |
+
"step": 327
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.61,
|
1975 |
+
"learning_rate": 7.545145128592009e-06,
|
1976 |
+
"loss": 0.0978,
|
1977 |
+
"step": 328
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 0.61,
|
1981 |
+
"learning_rate": 7.485825824914658e-06,
|
1982 |
+
"loss": 0.1941,
|
1983 |
+
"step": 329
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.61,
|
1987 |
+
"learning_rate": 7.426600809800753e-06,
|
1988 |
+
"loss": 0.0384,
|
1989 |
+
"step": 330
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 0.61,
|
1993 |
+
"learning_rate": 7.367472304354011e-06,
|
1994 |
+
"loss": 0.0872,
|
1995 |
+
"step": 331
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.61,
|
1999 |
+
"learning_rate": 7.308442526058757e-06,
|
2000 |
+
"loss": 0.1051,
|
2001 |
+
"step": 332
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 0.62,
|
2005 |
+
"learning_rate": 7.249513688696786e-06,
|
2006 |
+
"loss": 0.0918,
|
2007 |
+
"step": 333
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 0.62,
|
2011 |
+
"learning_rate": 7.190688002264308e-06,
|
2012 |
+
"loss": 0.2169,
|
2013 |
+
"step": 334
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 0.62,
|
2017 |
+
"learning_rate": 7.131967672889101e-06,
|
2018 |
+
"loss": 0.1647,
|
2019 |
+
"step": 335
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 0.62,
|
2023 |
+
"learning_rate": 7.073354902747742e-06,
|
2024 |
+
"loss": 0.0585,
|
2025 |
+
"step": 336
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.62,
|
2029 |
+
"learning_rate": 7.014851889983058e-06,
|
2030 |
+
"loss": 0.1743,
|
2031 |
+
"step": 337
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 0.62,
|
2035 |
+
"learning_rate": 6.956460828621641e-06,
|
2036 |
+
"loss": 0.3001,
|
2037 |
+
"step": 338
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.63,
|
2041 |
+
"learning_rate": 6.898183908491617e-06,
|
2042 |
+
"loss": 0.0977,
|
2043 |
+
"step": 339
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 0.63,
|
2047 |
+
"learning_rate": 6.840023315140476e-06,
|
2048 |
+
"loss": 0.0549,
|
2049 |
+
"step": 340
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 0.63,
|
2053 |
+
"learning_rate": 6.781981229753145e-06,
|
2054 |
+
"loss": 0.0738,
|
2055 |
+
"step": 341
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 0.63,
|
2059 |
+
"learning_rate": 6.7240598290701585e-06,
|
2060 |
+
"loss": 0.027,
|
2061 |
+
"step": 342
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 0.63,
|
2065 |
+
"learning_rate": 6.666261285306048e-06,
|
2066 |
+
"loss": 0.0647,
|
2067 |
+
"step": 343
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.64,
|
2071 |
+
"learning_rate": 6.608587766067853e-06,
|
2072 |
+
"loss": 0.0531,
|
2073 |
+
"step": 344
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 0.64,
|
2077 |
+
"learning_rate": 6.551041434273862e-06,
|
2078 |
+
"loss": 0.0582,
|
2079 |
+
"step": 345
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.64,
|
2083 |
+
"learning_rate": 6.4936244480724575e-06,
|
2084 |
+
"loss": 0.2357,
|
2085 |
+
"step": 346
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 0.64,
|
2089 |
+
"learning_rate": 6.4363389607612204e-06,
|
2090 |
+
"loss": 0.0614,
|
2091 |
+
"step": 347
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 0.64,
|
2095 |
+
"learning_rate": 6.379187120706138e-06,
|
2096 |
+
"loss": 0.1516,
|
2097 |
+
"step": 348
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 0.65,
|
2101 |
+
"learning_rate": 6.322171071261071e-06,
|
2102 |
+
"loss": 0.2906,
|
2103 |
+
"step": 349
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 0.65,
|
2107 |
+
"learning_rate": 6.265292950687329e-06,
|
2108 |
+
"loss": 0.0402,
|
2109 |
+
"step": 350
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.65,
|
2113 |
+
"learning_rate": 6.208554892073528e-06,
|
2114 |
+
"loss": 0.0895,
|
2115 |
+
"step": 351
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 0.65,
|
2119 |
+
"learning_rate": 6.151959023255545e-06,
|
2120 |
+
"loss": 0.109,
|
2121 |
+
"step": 352
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.65,
|
2125 |
+
"learning_rate": 6.095507466736763e-06,
|
2126 |
+
"loss": 0.1338,
|
2127 |
+
"step": 353
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 0.65,
|
2131 |
+
"learning_rate": 6.039202339608432e-06,
|
2132 |
+
"loss": 0.0541,
|
2133 |
+
"step": 354
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 0.66,
|
2137 |
+
"learning_rate": 5.983045753470308e-06,
|
2138 |
+
"loss": 0.0614,
|
2139 |
+
"step": 355
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 0.66,
|
2143 |
+
"learning_rate": 5.927039814351426e-06,
|
2144 |
+
"loss": 0.2844,
|
2145 |
+
"step": 356
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 0.66,
|
2149 |
+
"learning_rate": 5.871186622631155e-06,
|
2150 |
+
"loss": 0.1412,
|
2151 |
+
"step": 357
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.66,
|
2155 |
+
"learning_rate": 5.815488272960388e-06,
|
2156 |
+
"loss": 0.0575,
|
2157 |
+
"step": 358
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 0.66,
|
2161 |
+
"learning_rate": 5.759946854183036e-06,
|
2162 |
+
"loss": 0.1047,
|
2163 |
+
"step": 359
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.67,
|
2167 |
+
"learning_rate": 5.704564449257635e-06,
|
2168 |
+
"loss": 0.2065,
|
2169 |
+
"step": 360
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 0.67,
|
2173 |
+
"learning_rate": 5.649343135179271e-06,
|
2174 |
+
"loss": 0.0995,
|
2175 |
+
"step": 361
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 0.67,
|
2179 |
+
"learning_rate": 5.59428498290167e-06,
|
2180 |
+
"loss": 0.1517,
|
2181 |
+
"step": 362
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 0.67,
|
2185 |
+
"learning_rate": 5.539392057259536e-06,
|
2186 |
+
"loss": 0.1122,
|
2187 |
+
"step": 363
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 0.67,
|
2191 |
+
"learning_rate": 5.484666416891109e-06,
|
2192 |
+
"loss": 0.0992,
|
2193 |
+
"step": 364
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.67,
|
2197 |
+
"learning_rate": 5.430110114160965e-06,
|
2198 |
+
"loss": 0.1303,
|
2199 |
+
"step": 365
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 0.68,
|
2203 |
+
"learning_rate": 5.375725195083046e-06,
|
2204 |
+
"loss": 0.1192,
|
2205 |
+
"step": 366
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 0.68,
|
2209 |
+
"learning_rate": 5.321513699243924e-06,
|
2210 |
+
"loss": 0.0991,
|
2211 |
+
"step": 367
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 0.68,
|
2215 |
+
"learning_rate": 5.267477659726319e-06,
|
2216 |
+
"loss": 0.077,
|
2217 |
+
"step": 368
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 0.68,
|
2221 |
+
"learning_rate": 5.213619103032845e-06,
|
2222 |
+
"loss": 0.1052,
|
2223 |
+
"step": 369
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 0.68,
|
2227 |
+
"learning_rate": 5.159940049010015e-06,
|
2228 |
+
"loss": 0.2359,
|
2229 |
+
"step": 370
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 0.69,
|
2233 |
+
"learning_rate": 5.106442510772489e-06,
|
2234 |
+
"loss": 0.0501,
|
2235 |
+
"step": 371
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.69,
|
2239 |
+
"learning_rate": 5.053128494627578e-06,
|
2240 |
+
"loss": 0.0803,
|
2241 |
+
"step": 372
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 0.69,
|
2245 |
+
"learning_rate": 5.000000000000003e-06,
|
2246 |
+
"loss": 0.2073,
|
2247 |
+
"step": 373
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 0.69,
|
2251 |
+
"learning_rate": 4.947059019356904e-06,
|
2252 |
+
"loss": 0.0479,
|
2253 |
+
"step": 374
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 0.69,
|
2257 |
+
"learning_rate": 4.89430753813313e-06,
|
2258 |
+
"loss": 0.125,
|
2259 |
+
"step": 375
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 0.7,
|
2263 |
+
"learning_rate": 4.8417475346567635e-06,
|
2264 |
+
"loss": 0.0715,
|
2265 |
+
"step": 376
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 0.7,
|
2269 |
+
"learning_rate": 4.78938098007494e-06,
|
2270 |
+
"loss": 0.0242,
|
2271 |
+
"step": 377
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 0.7,
|
2275 |
+
"learning_rate": 4.737209838279923e-06,
|
2276 |
+
"loss": 0.1242,
|
2277 |
+
"step": 378
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.7,
|
2281 |
+
"learning_rate": 4.685236065835443e-06,
|
2282 |
+
"loss": 0.1771,
|
2283 |
+
"step": 379
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 0.7,
|
2287 |
+
"learning_rate": 4.633461611903336e-06,
|
2288 |
+
"loss": 0.1037,
|
2289 |
+
"step": 380
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 0.7,
|
2293 |
+
"learning_rate": 4.581888418170429e-06,
|
2294 |
+
"loss": 0.0733,
|
2295 |
+
"step": 381
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 0.71,
|
2299 |
+
"learning_rate": 4.530518418775734e-06,
|
2300 |
+
"loss": 0.0565,
|
2301 |
+
"step": 382
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 0.71,
|
2305 |
+
"learning_rate": 4.479353540237903e-06,
|
2306 |
+
"loss": 0.1092,
|
2307 |
+
"step": 383
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 0.71,
|
2311 |
+
"learning_rate": 4.4283957013829845e-06,
|
2312 |
+
"loss": 0.0371,
|
2313 |
+
"step": 384
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 0.71,
|
2317 |
+
"learning_rate": 4.3776468132724605e-06,
|
2318 |
+
"loss": 0.1105,
|
2319 |
+
"step": 385
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.71,
|
2323 |
+
"learning_rate": 4.327108779131573e-06,
|
2324 |
+
"loss": 0.1856,
|
2325 |
+
"step": 386
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 0.72,
|
2329 |
+
"learning_rate": 4.276783494277954e-06,
|
2330 |
+
"loss": 0.1237,
|
2331 |
+
"step": 387
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 0.72,
|
2335 |
+
"learning_rate": 4.226672846050538e-06,
|
2336 |
+
"loss": 0.2521,
|
2337 |
+
"step": 388
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 0.72,
|
2341 |
+
"learning_rate": 4.176778713738787e-06,
|
2342 |
+
"loss": 0.0565,
|
2343 |
+
"step": 389
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 0.72,
|
2347 |
+
"learning_rate": 4.127102968512214e-06,
|
2348 |
+
"loss": 0.0518,
|
2349 |
+
"step": 390
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 0.72,
|
2353 |
+
"learning_rate": 4.077647473350201e-06,
|
2354 |
+
"loss": 0.0735,
|
2355 |
+
"step": 391
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 0.72,
|
2359 |
+
"learning_rate": 4.028414082972141e-06,
|
2360 |
+
"loss": 0.0786,
|
2361 |
+
"step": 392
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.73,
|
2365 |
+
"learning_rate": 3.9794046437678705e-06,
|
2366 |
+
"loss": 0.025,
|
2367 |
+
"step": 393
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 0.73,
|
2371 |
+
"learning_rate": 3.930620993728434e-06,
|
2372 |
+
"loss": 0.2235,
|
2373 |
+
"step": 394
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 0.73,
|
2377 |
+
"learning_rate": 3.882064962377154e-06,
|
2378 |
+
"loss": 0.1307,
|
2379 |
+
"step": 395
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 0.73,
|
2383 |
+
"learning_rate": 3.83373837070101e-06,
|
2384 |
+
"loss": 0.0224,
|
2385 |
+
"step": 396
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 0.73,
|
2389 |
+
"learning_rate": 3.7856430310823546e-06,
|
2390 |
+
"loss": 0.1109,
|
2391 |
+
"step": 397
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 0.74,
|
2395 |
+
"learning_rate": 3.737780747230941e-06,
|
2396 |
+
"loss": 0.0624,
|
2397 |
+
"step": 398
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 0.74,
|
2401 |
+
"learning_rate": 3.6901533141162804e-06,
|
2402 |
+
"loss": 0.055,
|
2403 |
+
"step": 399
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.74,
|
2407 |
+
"learning_rate": 3.6427625179003223e-06,
|
2408 |
+
"loss": 0.2079,
|
2409 |
+
"step": 400
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 0.74,
|
2413 |
+
"learning_rate": 3.595610135870472e-06,
|
2414 |
+
"loss": 0.2215,
|
2415 |
+
"step": 401
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 0.74,
|
2419 |
+
"learning_rate": 3.548697936372937e-06,
|
2420 |
+
"loss": 0.1016,
|
2421 |
+
"step": 402
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 0.74,
|
2425 |
+
"learning_rate": 3.5020276787464058e-06,
|
2426 |
+
"loss": 0.1229,
|
2427 |
+
"step": 403
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 0.75,
|
2431 |
+
"learning_rate": 3.455601113256073e-06,
|
2432 |
+
"loss": 0.0759,
|
2433 |
+
"step": 404
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 0.75,
|
2437 |
+
"learning_rate": 3.4094199810279926e-06,
|
2438 |
+
"loss": 0.1667,
|
2439 |
+
"step": 405
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 0.75,
|
2443 |
+
"learning_rate": 3.3634860139837877e-06,
|
2444 |
+
"loss": 0.048,
|
2445 |
+
"step": 406
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.75,
|
2449 |
+
"learning_rate": 3.317800934775696e-06,
|
2450 |
+
"loss": 0.0543,
|
2451 |
+
"step": 407
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 0.75,
|
2455 |
+
"learning_rate": 3.2723664567219627e-06,
|
2456 |
+
"loss": 0.1656,
|
2457 |
+
"step": 408
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 0.76,
|
2461 |
+
"learning_rate": 3.2271842837425917e-06,
|
2462 |
+
"loss": 0.0409,
|
2463 |
+
"step": 409
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 0.76,
|
2467 |
+
"learning_rate": 3.1822561102954373e-06,
|
2468 |
+
"loss": 0.1173,
|
2469 |
+
"step": 410
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 0.76,
|
2473 |
+
"learning_rate": 3.1375836213126653e-06,
|
2474 |
+
"loss": 0.0964,
|
2475 |
+
"step": 411
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 0.76,
|
2479 |
+
"learning_rate": 3.0931684921375572e-06,
|
2480 |
+
"loss": 0.0432,
|
2481 |
+
"step": 412
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 0.76,
|
2485 |
+
"learning_rate": 3.0490123884616795e-06,
|
2486 |
+
"loss": 0.1451,
|
2487 |
+
"step": 413
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.77,
|
2491 |
+
"learning_rate": 3.0051169662624224e-06,
|
2492 |
+
"loss": 0.1226,
|
2493 |
+
"step": 414
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 0.77,
|
2497 |
+
"learning_rate": 2.9614838717408866e-06,
|
2498 |
+
"loss": 0.096,
|
2499 |
+
"step": 415
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 0.77,
|
2503 |
+
"learning_rate": 2.918114741260156e-06,
|
2504 |
+
"loss": 0.1152,
|
2505 |
+
"step": 416
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 0.77,
|
2509 |
+
"learning_rate": 2.8750112012839215e-06,
|
2510 |
+
"loss": 0.0575,
|
2511 |
+
"step": 417
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 0.77,
|
2515 |
+
"learning_rate": 2.8321748683154893e-06,
|
2516 |
+
"loss": 0.097,
|
2517 |
+
"step": 418
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 0.77,
|
2521 |
+
"learning_rate": 2.7896073488371535e-06,
|
2522 |
+
"loss": 0.0513,
|
2523 |
+
"step": 419
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 0.78,
|
2527 |
+
"learning_rate": 2.7473102392499517e-06,
|
2528 |
+
"loss": 0.0566,
|
2529 |
+
"step": 420
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.78,
|
2533 |
+
"learning_rate": 2.7052851258137936e-06,
|
2534 |
+
"loss": 0.0193,
|
2535 |
+
"step": 421
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 0.78,
|
2539 |
+
"learning_rate": 2.663533584587974e-06,
|
2540 |
+
"loss": 0.1507,
|
2541 |
+
"step": 422
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 0.78,
|
2545 |
+
"learning_rate": 2.622057181372063e-06,
|
2546 |
+
"loss": 0.0208,
|
2547 |
+
"step": 423
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 0.78,
|
2551 |
+
"learning_rate": 2.580857471647186e-06,
|
2552 |
+
"loss": 0.0893,
|
2553 |
+
"step": 424
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 0.79,
|
2557 |
+
"learning_rate": 2.539936000517689e-06,
|
2558 |
+
"loss": 0.0988,
|
2559 |
+
"step": 425
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 0.79,
|
2563 |
+
"learning_rate": 2.4992943026531935e-06,
|
2564 |
+
"loss": 0.0368,
|
2565 |
+
"step": 426
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 0.79,
|
2569 |
+
"learning_rate": 2.4589339022310386e-06,
|
2570 |
+
"loss": 0.0911,
|
2571 |
+
"step": 427
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.79,
|
2575 |
+
"learning_rate": 2.4188563128791255e-06,
|
2576 |
+
"loss": 0.1093,
|
2577 |
+
"step": 428
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 0.79,
|
2581 |
+
"learning_rate": 2.379063037619146e-06,
|
2582 |
+
"loss": 0.0717,
|
2583 |
+
"step": 429
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 0.79,
|
2587 |
+
"learning_rate": 2.339555568810221e-06,
|
2588 |
+
"loss": 0.1486,
|
2589 |
+
"step": 430
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 0.8,
|
2593 |
+
"learning_rate": 2.300335388092929e-06,
|
2594 |
+
"loss": 0.1174,
|
2595 |
+
"step": 431
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 0.8,
|
2599 |
+
"learning_rate": 2.261403966333742e-06,
|
2600 |
+
"loss": 0.2022,
|
2601 |
+
"step": 432
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 0.8,
|
2605 |
+
"learning_rate": 2.2227627635698624e-06,
|
2606 |
+
"loss": 0.0376,
|
2607 |
+
"step": 433
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 0.8,
|
2611 |
+
"learning_rate": 2.1844132289544684e-06,
|
2612 |
+
"loss": 0.3022,
|
2613 |
+
"step": 434
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.8,
|
2617 |
+
"learning_rate": 2.1463568007023706e-06,
|
2618 |
+
"loss": 0.0121,
|
2619 |
+
"step": 435
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 0.81,
|
2623 |
+
"learning_rate": 2.1085949060360654e-06,
|
2624 |
+
"loss": 0.1441,
|
2625 |
+
"step": 436
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 0.81,
|
2629 |
+
"learning_rate": 2.0711289611322204e-06,
|
2630 |
+
"loss": 0.0457,
|
2631 |
+
"step": 437
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 0.81,
|
2635 |
+
"learning_rate": 2.0339603710685574e-06,
|
2636 |
+
"loss": 0.0324,
|
2637 |
+
"step": 438
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 0.81,
|
2641 |
+
"learning_rate": 1.9970905297711606e-06,
|
2642 |
+
"loss": 0.045,
|
2643 |
+
"step": 439
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 0.81,
|
2647 |
+
"learning_rate": 1.9605208199621993e-06,
|
2648 |
+
"loss": 0.0644,
|
2649 |
+
"step": 440
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 0.82,
|
2653 |
+
"learning_rate": 1.924252613108073e-06,
|
2654 |
+
"loss": 0.0743,
|
2655 |
+
"step": 441
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.82,
|
2659 |
+
"learning_rate": 1.8882872693679787e-06,
|
2660 |
+
"loss": 0.054,
|
2661 |
+
"step": 442
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 0.82,
|
2665 |
+
"learning_rate": 1.8526261375428955e-06,
|
2666 |
+
"loss": 0.1679,
|
2667 |
+
"step": 443
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 0.82,
|
2671 |
+
"learning_rate": 1.8172705550250093e-06,
|
2672 |
+
"loss": 0.0666,
|
2673 |
+
"step": 444
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 0.82,
|
2677 |
+
"learning_rate": 1.7822218477475496e-06,
|
2678 |
+
"loss": 0.2,
|
2679 |
+
"step": 445
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 0.82,
|
2683 |
+
"learning_rate": 1.7474813301350668e-06,
|
2684 |
+
"loss": 0.1191,
|
2685 |
+
"step": 446
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 0.83,
|
2689 |
+
"learning_rate": 1.7130503050541368e-06,
|
2690 |
+
"loss": 0.1166,
|
2691 |
+
"step": 447
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 0.83,
|
2695 |
+
"learning_rate": 1.6789300637645e-06,
|
2696 |
+
"loss": 0.0089,
|
2697 |
+
"step": 448
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.83,
|
2701 |
+
"learning_rate": 1.6451218858706374e-06,
|
2702 |
+
"loss": 0.0848,
|
2703 |
+
"step": 449
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 0.83,
|
2707 |
+
"learning_rate": 1.6116270392737753e-06,
|
2708 |
+
"loss": 0.1263,
|
2709 |
+
"step": 450
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 0.83,
|
2713 |
+
"learning_rate": 1.578446780124344e-06,
|
2714 |
+
"loss": 0.1338,
|
2715 |
+
"step": 451
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 0.84,
|
2719 |
+
"learning_rate": 1.5455823527748626e-06,
|
2720 |
+
"loss": 0.0566,
|
2721 |
+
"step": 452
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 0.84,
|
2725 |
+
"learning_rate": 1.5130349897332764e-06,
|
2726 |
+
"loss": 0.0618,
|
2727 |
+
"step": 453
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 0.84,
|
2731 |
+
"learning_rate": 1.4808059116167306e-06,
|
2732 |
+
"loss": 0.0259,
|
2733 |
+
"step": 454
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 0.84,
|
2737 |
+
"learning_rate": 1.4488963271057943e-06,
|
2738 |
+
"loss": 0.1682,
|
2739 |
+
"step": 455
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.84,
|
2743 |
+
"learning_rate": 1.4173074328991376e-06,
|
2744 |
+
"loss": 0.0967,
|
2745 |
+
"step": 456
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 0.84,
|
2749 |
+
"learning_rate": 1.3860404136686411e-06,
|
2750 |
+
"loss": 0.0799,
|
2751 |
+
"step": 457
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 0.85,
|
2755 |
+
"learning_rate": 1.355096442014977e-06,
|
2756 |
+
"loss": 0.1426,
|
2757 |
+
"step": 458
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 0.85,
|
2761 |
+
"learning_rate": 1.3244766784236307e-06,
|
2762 |
+
"loss": 0.1401,
|
2763 |
+
"step": 459
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 0.85,
|
2767 |
+
"learning_rate": 1.294182271221377e-06,
|
2768 |
+
"loss": 0.0526,
|
2769 |
+
"step": 460
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 0.85,
|
2773 |
+
"learning_rate": 1.2642143565332154e-06,
|
2774 |
+
"loss": 0.1516,
|
2775 |
+
"step": 461
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 0.85,
|
2779 |
+
"learning_rate": 1.2345740582397647e-06,
|
2780 |
+
"loss": 0.0326,
|
2781 |
+
"step": 462
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.86,
|
2785 |
+
"learning_rate": 1.2052624879351105e-06,
|
2786 |
+
"loss": 0.0517,
|
2787 |
+
"step": 463
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 0.86,
|
2791 |
+
"learning_rate": 1.176280744885121e-06,
|
2792 |
+
"loss": 0.094,
|
2793 |
+
"step": 464
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 0.86,
|
2797 |
+
"learning_rate": 1.1476299159862204e-06,
|
2798 |
+
"loss": 0.0684,
|
2799 |
+
"step": 465
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 0.86,
|
2803 |
+
"learning_rate": 1.1193110757246251e-06,
|
2804 |
+
"loss": 0.0845,
|
2805 |
+
"step": 466
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 0.86,
|
2809 |
+
"learning_rate": 1.09132528613605e-06,
|
2810 |
+
"loss": 0.1105,
|
2811 |
+
"step": 467
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 0.87,
|
2815 |
+
"learning_rate": 1.0636735967658785e-06,
|
2816 |
+
"loss": 0.0947,
|
2817 |
+
"step": 468
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 0.87,
|
2821 |
+
"learning_rate": 1.0363570446297999e-06,
|
2822 |
+
"loss": 0.0685,
|
2823 |
+
"step": 469
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.87,
|
2827 |
+
"learning_rate": 1.0093766541749206e-06,
|
2828 |
+
"loss": 0.0902,
|
2829 |
+
"step": 470
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 0.87,
|
2833 |
+
"learning_rate": 9.827334372413444e-07,
|
2834 |
+
"loss": 0.0257,
|
2835 |
+
"step": 471
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 0.87,
|
2839 |
+
"learning_rate": 9.564283930242258e-07,
|
2840 |
+
"loss": 0.1048,
|
2841 |
+
"step": 472
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 0.87,
|
2845 |
+
"learning_rate": 9.304625080362939e-07,
|
2846 |
+
"loss": 0.1365,
|
2847 |
+
"step": 473
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 0.88,
|
2851 |
+
"learning_rate": 9.048367560708604e-07,
|
2852 |
+
"loss": 0.2323,
|
2853 |
+
"step": 474
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 0.88,
|
2857 |
+
"learning_rate": 8.79552098165296e-07,
|
2858 |
+
"loss": 0.0435,
|
2859 |
+
"step": 475
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 0.88,
|
2863 |
+
"learning_rate": 8.546094825649909e-07,
|
2864 |
+
"loss": 0.0644,
|
2865 |
+
"step": 476
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.88,
|
2869 |
+
"learning_rate": 8.300098446877925e-07,
|
2870 |
+
"loss": 0.0884,
|
2871 |
+
"step": 477
|
2872 |
+
},
|
2873 |
+
{
|
2874 |
+
"epoch": 0.88,
|
2875 |
+
"learning_rate": 8.057541070889229e-07,
|
2876 |
+
"loss": 0.1381,
|
2877 |
+
"step": 478
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 0.89,
|
2881 |
+
"learning_rate": 7.818431794263837e-07,
|
2882 |
+
"loss": 0.0472,
|
2883 |
+
"step": 479
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 0.89,
|
2887 |
+
"learning_rate": 7.582779584268374e-07,
|
2888 |
+
"loss": 0.0606,
|
2889 |
+
"step": 480
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 0.89,
|
2893 |
+
"learning_rate": 7.350593278519824e-07,
|
2894 |
+
"loss": 0.0325,
|
2895 |
+
"step": 481
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 0.89,
|
2899 |
+
"learning_rate": 7.121881584654056e-07,
|
2900 |
+
"loss": 0.0391,
|
2901 |
+
"step": 482
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 0.89,
|
2905 |
+
"learning_rate": 6.896653079999249e-07,
|
2906 |
+
"loss": 0.0965,
|
2907 |
+
"step": 483
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.89,
|
2911 |
+
"learning_rate": 6.67491621125429e-07,
|
2912 |
+
"loss": 0.0288,
|
2913 |
+
"step": 484
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 0.9,
|
2917 |
+
"learning_rate": 6.45667929417193e-07,
|
2918 |
+
"loss": 0.0608,
|
2919 |
+
"step": 485
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 0.9,
|
2923 |
+
"learning_rate": 6.241950513246931e-07,
|
2924 |
+
"loss": 0.0619,
|
2925 |
+
"step": 486
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 0.9,
|
2929 |
+
"learning_rate": 6.030737921409169e-07,
|
2930 |
+
"loss": 0.2691,
|
2931 |
+
"step": 487
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 0.9,
|
2935 |
+
"learning_rate": 5.823049439721562e-07,
|
2936 |
+
"loss": 0.1071,
|
2937 |
+
"step": 488
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 0.9,
|
2941 |
+
"learning_rate": 5.618892857083069e-07,
|
2942 |
+
"loss": 0.1501,
|
2943 |
+
"step": 489
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 0.91,
|
2947 |
+
"learning_rate": 5.418275829936537e-07,
|
2948 |
+
"loss": 0.0807,
|
2949 |
+
"step": 490
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.91,
|
2953 |
+
"learning_rate": 5.221205881981594e-07,
|
2954 |
+
"loss": 0.0666,
|
2955 |
+
"step": 491
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 0.91,
|
2959 |
+
"learning_rate": 5.027690403892461e-07,
|
2960 |
+
"loss": 0.0993,
|
2961 |
+
"step": 492
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 0.91,
|
2965 |
+
"learning_rate": 4.837736653040825e-07,
|
2966 |
+
"loss": 0.2467,
|
2967 |
+
"step": 493
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 0.91,
|
2971 |
+
"learning_rate": 4.6513517532236096e-07,
|
2972 |
+
"loss": 0.0563,
|
2973 |
+
"step": 494
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 0.91,
|
2977 |
+
"learning_rate": 4.468542694395861e-07,
|
2978 |
+
"loss": 0.0792,
|
2979 |
+
"step": 495
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 0.92,
|
2983 |
+
"learning_rate": 4.2893163324085886e-07,
|
2984 |
+
"loss": 0.0648,
|
2985 |
+
"step": 496
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 0.92,
|
2989 |
+
"learning_rate": 4.113679388751635e-07,
|
2990 |
+
"loss": 0.3011,
|
2991 |
+
"step": 497
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.92,
|
2995 |
+
"learning_rate": 3.941638450301644e-07,
|
2996 |
+
"loss": 0.221,
|
2997 |
+
"step": 498
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 0.92,
|
3001 |
+
"learning_rate": 3.773199969074959e-07,
|
3002 |
+
"loss": 0.0961,
|
3003 |
+
"step": 499
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 0.92,
|
3007 |
+
"learning_rate": 3.608370261985761e-07,
|
3008 |
+
"loss": 0.0816,
|
3009 |
+
"step": 500
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 0.93,
|
3013 |
+
"learning_rate": 3.4471555106090573e-07,
|
3014 |
+
"loss": 0.0565,
|
3015 |
+
"step": 501
|
3016 |
+
},
|
3017 |
+
{
|
3018 |
+
"epoch": 0.93,
|
3019 |
+
"learning_rate": 3.2895617609489337e-07,
|
3020 |
+
"loss": 0.0703,
|
3021 |
+
"step": 502
|
3022 |
+
},
|
3023 |
+
{
|
3024 |
+
"epoch": 0.93,
|
3025 |
+
"learning_rate": 3.135594923211771e-07,
|
3026 |
+
"loss": 0.0622,
|
3027 |
+
"step": 503
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 0.93,
|
3031 |
+
"learning_rate": 2.9852607715846194e-07,
|
3032 |
+
"loss": 0.1138,
|
3033 |
+
"step": 504
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.93,
|
3037 |
+
"learning_rate": 2.838564944018618e-07,
|
3038 |
+
"loss": 0.2741,
|
3039 |
+
"step": 505
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 0.94,
|
3043 |
+
"learning_rate": 2.6955129420176193e-07,
|
3044 |
+
"loss": 0.06,
|
3045 |
+
"step": 506
|
3046 |
+
},
|
3047 |
+
{
|
3048 |
+
"epoch": 0.94,
|
3049 |
+
"learning_rate": 2.556110130431788e-07,
|
3050 |
+
"loss": 0.0322,
|
3051 |
+
"step": 507
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 0.94,
|
3055 |
+
"learning_rate": 2.420361737256438e-07,
|
3056 |
+
"loss": 0.1867,
|
3057 |
+
"step": 508
|
3058 |
+
},
|
3059 |
+
{
|
3060 |
+
"epoch": 0.94,
|
3061 |
+
"learning_rate": 2.2882728534360131e-07,
|
3062 |
+
"loss": 0.2815,
|
3063 |
+
"step": 509
|
3064 |
+
},
|
3065 |
+
{
|
3066 |
+
"epoch": 0.94,
|
3067 |
+
"learning_rate": 2.159848432673084e-07,
|
3068 |
+
"loss": 0.133,
|
3069 |
+
"step": 510
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 0.94,
|
3073 |
+
"learning_rate": 2.035093291242607e-07,
|
3074 |
+
"loss": 0.134,
|
3075 |
+
"step": 511
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.95,
|
3079 |
+
"learning_rate": 1.914012107811336e-07,
|
3080 |
+
"loss": 0.1156,
|
3081 |
+
"step": 512
|
3082 |
+
},
|
3083 |
+
{
|
3084 |
+
"epoch": 0.95,
|
3085 |
+
"learning_rate": 1.7966094232622856e-07,
|
3086 |
+
"loss": 0.3407,
|
3087 |
+
"step": 513
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 0.95,
|
3091 |
+
"learning_rate": 1.6828896405244988e-07,
|
3092 |
+
"loss": 0.0641,
|
3093 |
+
"step": 514
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 0.95,
|
3097 |
+
"learning_rate": 1.572857024407881e-07,
|
3098 |
+
"loss": 0.0459,
|
3099 |
+
"step": 515
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 0.95,
|
3103 |
+
"learning_rate": 1.466515701443294e-07,
|
3104 |
+
"loss": 0.1403,
|
3105 |
+
"step": 516
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 0.96,
|
3109 |
+
"learning_rate": 1.3638696597277678e-07,
|
3110 |
+
"loss": 0.0836,
|
3111 |
+
"step": 517
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 0.96,
|
3115 |
+
"learning_rate": 1.264922748774955e-07,
|
3116 |
+
"loss": 0.1507,
|
3117 |
+
"step": 518
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.96,
|
3121 |
+
"learning_rate": 1.1696786793707782e-07,
|
3122 |
+
"loss": 0.1091,
|
3123 |
+
"step": 519
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 0.96,
|
3127 |
+
"learning_rate": 1.0781410234342093e-07,
|
3128 |
+
"loss": 0.0432,
|
3129 |
+
"step": 520
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 0.96,
|
3133 |
+
"learning_rate": 9.90313213883376e-08,
|
3134 |
+
"loss": 0.0166,
|
3135 |
+
"step": 521
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 0.96,
|
3139 |
+
"learning_rate": 9.061985445067756e-08,
|
3140 |
+
"loss": 0.1675,
|
3141 |
+
"step": 522
|
3142 |
+
},
|
3143 |
+
{
|
3144 |
+
"epoch": 0.97,
|
3145 |
+
"learning_rate": 8.258001698397744e-08,
|
3146 |
+
"loss": 0.0462,
|
3147 |
+
"step": 523
|
3148 |
+
},
|
3149 |
+
{
|
3150 |
+
"epoch": 0.97,
|
3151 |
+
"learning_rate": 7.491211050462798e-08,
|
3152 |
+
"loss": 0.0219,
|
3153 |
+
"step": 524
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 0.97,
|
3157 |
+
"learning_rate": 6.761642258056977e-08,
|
3158 |
+
"loss": 0.1261,
|
3159 |
+
"step": 525
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.97,
|
3163 |
+
"learning_rate": 6.069322682050516e-08,
|
3164 |
+
"loss": 0.1249,
|
3165 |
+
"step": 526
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 0.97,
|
3169 |
+
"learning_rate": 5.414278286363761e-08,
|
3170 |
+
"loss": 0.0674,
|
3171 |
+
"step": 527
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 0.98,
|
3175 |
+
"learning_rate": 4.796533636993728e-08,
|
3176 |
+
"loss": 0.0171,
|
3177 |
+
"step": 528
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 0.98,
|
3181 |
+
"learning_rate": 4.216111901092501e-08,
|
3182 |
+
"loss": 0.0653,
|
3183 |
+
"step": 529
|
3184 |
+
},
|
3185 |
+
{
|
3186 |
+
"epoch": 0.98,
|
3187 |
+
"learning_rate": 3.6730348460986e-08,
|
3188 |
+
"loss": 0.0292,
|
3189 |
+
"step": 530
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 0.98,
|
3193 |
+
"learning_rate": 3.167322838920406e-08,
|
3194 |
+
"loss": 0.1442,
|
3195 |
+
"step": 531
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 0.98,
|
3199 |
+
"learning_rate": 2.6989948451726643e-08,
|
3200 |
+
"loss": 0.0773,
|
3201 |
+
"step": 532
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.99,
|
3205 |
+
"learning_rate": 2.2680684284650532e-08,
|
3206 |
+
"loss": 0.0428,
|
3207 |
+
"step": 533
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 0.99,
|
3211 |
+
"learning_rate": 1.8745597497433765e-08,
|
3212 |
+
"loss": 0.2392,
|
3213 |
+
"step": 534
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 0.99,
|
3217 |
+
"learning_rate": 1.518483566683826e-08,
|
3218 |
+
"loss": 0.1413,
|
3219 |
+
"step": 535
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 0.99,
|
3223 |
+
"learning_rate": 1.1998532331389812e-08,
|
3224 |
+
"loss": 0.0554,
|
3225 |
+
"step": 536
|
3226 |
+
},
|
3227 |
+
{
|
3228 |
+
"epoch": 0.99,
|
3229 |
+
"learning_rate": 9.186806986376528e-09,
|
3230 |
+
"loss": 0.1174,
|
3231 |
+
"step": 537
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 0.99,
|
3235 |
+
"learning_rate": 6.749765079363535e-09,
|
3236 |
+
"loss": 0.048,
|
3237 |
+
"step": 538
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 1.0,
|
3241 |
+
"learning_rate": 4.687498006236135e-09,
|
3242 |
+
"loss": 0.1818,
|
3243 |
+
"step": 539
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 1.0,
|
3247 |
+
"learning_rate": 3.0000831077803273e-09,
|
3248 |
+
"loss": 0.083,
|
3249 |
+
"step": 540
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 1.0,
|
3253 |
+
"learning_rate": 1.6875836667729073e-09,
|
3254 |
+
"loss": 0.0186,
|
3255 |
+
"step": 541
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 1.0,
|
3259 |
+
"step": 541,
|
3260 |
+
"total_flos": 1291092221952.0,
|
3261 |
+
"train_loss": 0.14259492732281495,
|
3262 |
+
"train_runtime": 4024.6248,
|
3263 |
+
"train_samples_per_second": 1.342,
|
3264 |
+
"train_steps_per_second": 0.134
|
3265 |
+
}
|
3266 |
+
],
|
3267 |
+
"logging_steps": 1.0,
|
3268 |
+
"max_steps": 541,
|
3269 |
+
"num_input_tokens_seen": 0,
|
3270 |
+
"num_train_epochs": 1,
|
3271 |
+
"save_steps": 500,
|
3272 |
+
"total_flos": 1291092221952.0,
|
3273 |
+
"train_batch_size": 10,
|
3274 |
+
"trial_name": null,
|
3275 |
+
"trial_params": null
|
3276 |
+
}
|
CheckGuard Models/wholeimage/check_no/finetune_lora_llava_mistral.sh
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Use first parameter as GPU IDs, default to "0,1,2,3" if not provided
|
3 |
+
GPU_IDS=${1:-0,1,2,3}
|
4 |
+
|
5 |
+
|
6 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29604\
|
7 |
+
llava/train/train_mem.py \
|
8 |
+
--lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
|
9 |
+
--deepspeed ./scripts/zero3.json \
|
10 |
+
--model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
|
11 |
+
--version mistral_instruct \
|
12 |
+
--data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/check_no/check_no_dataset.json \
|
13 |
+
--image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
|
14 |
+
--vision_tower openai/clip-vit-large-patch14-336 \
|
15 |
+
--mm_projector_type mlp2x_gelu \
|
16 |
+
--mm_vision_select_layer -2 \
|
17 |
+
--mm_use_im_start_end False \
|
18 |
+
--mm_use_im_patch_token False \
|
19 |
+
--mm_patch_merge_type spatial_unpad \
|
20 |
+
--image_aspect_ratio anyres \
|
21 |
+
--group_by_modality_length False \
|
22 |
+
--bf16 False \
|
23 |
+
--fp16 True \
|
24 |
+
--output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model \
|
25 |
+
--num_train_epochs 1 \
|
26 |
+
--per_device_train_batch_size 10 \
|
27 |
+
--per_device_eval_batch_size 1 \
|
28 |
+
--gradient_accumulation_steps 1 \
|
29 |
+
--evaluation_strategy "no" \
|
30 |
+
--save_strategy "steps" \
|
31 |
+
--save_steps 500 \
|
32 |
+
--save_total_limit 5 \
|
33 |
+
--learning_rate 2e-5 \
|
34 |
+
--weight_decay 0. \
|
35 |
+
--warmup_ratio 0.05 \
|
36 |
+
--lr_scheduler_type "cosine" \
|
37 |
+
--logging_steps 1 \
|
38 |
+
--tf32 True \
|
39 |
+
--model_max_length 4096 \
|
40 |
+
--gradient_checkpointing True \
|
41 |
+
--dataloader_num_workers 4 \
|
42 |
+
--lazy_preprocess True \
|
43 |
+
--report_to wandb \
|