larry5 commited on
Commit
0014463
·
verified ·
1 Parent(s): 84a369a

Upload the PEFT-MLLM models

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. CheckGuard Models/wholeimage/amount/finetune_lora_llava_mistral.sh +39 -0
  2. CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/README.md +202 -0
  3. CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_config.json +34 -0
  4. CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors +3 -0
  5. CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/config.json +70 -0
  6. CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin +3 -0
  7. CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/trainer_state.json +2010 -0
  8. CheckGuard Models/wholeimage/bank/finetune_lora_llava_mistral.sh +43 -0
  9. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/README.md +202 -0
  10. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_config.json +34 -0
  11. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors +3 -0
  12. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md +202 -0
  13. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json +34 -0
  14. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors +3 -0
  15. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  16. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  17. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest +1 -0
  18. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth +3 -0
  19. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt +3 -0
  20. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json +24 -0
  21. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model +3 -0
  22. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json +44 -0
  23. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json +3021 -0
  24. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin +3 -0
  25. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py +587 -0
  26. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/config.json +70 -0
  27. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin +3 -0
  28. CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/trainer_state.json +3360 -0
  29. CheckGuard Models/wholeimage/bank_no/finetune_lora_llava_mistral.sh +43 -0
  30. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/README.md +202 -0
  31. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json +34 -0
  32. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors +3 -0
  33. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md +202 -0
  34. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json +34 -0
  35. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors +3 -0
  36. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  37. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  38. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest +1 -0
  39. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth +3 -0
  40. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt +3 -0
  41. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json +24 -0
  42. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model +3 -0
  43. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json +44 -0
  44. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json +3021 -0
  45. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin +3 -0
  46. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py +587 -0
  47. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/config.json +70 -0
  48. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin +3 -0
  49. CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json +3276 -0
  50. CheckGuard Models/wholeimage/check_no/finetune_lora_llava_mistral.sh +43 -0
CheckGuard Models/wholeimage/amount/finetune_lora_llava_mistral.sh ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ deepspeed llava/train/train_mem.py \
4
+ --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
5
+ --deepspeed ./scripts/zero3.json \
6
+ --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
7
+ --version mistral_instruct \
8
+ --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/amount/modified_path_to_train_val_human-gpt-whole-check.json \
9
+ --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
10
+ --vision_tower openai/clip-vit-large-patch14-336 \
11
+ --mm_projector_type mlp2x_gelu \
12
+ --mm_vision_select_layer -2 \
13
+ --mm_use_im_start_end False \
14
+ --mm_use_im_patch_token False \
15
+ --mm_patch_merge_type spatial_unpad \
16
+ --image_aspect_ratio anyres \
17
+ --group_by_modality_length False \
18
+ --bf16 False \
19
+ --fp16 True \
20
+ --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model \
21
+ --num_train_epochs 1 \
22
+ --per_device_train_batch_size 10 \
23
+ --per_device_eval_batch_size 1 \
24
+ --gradient_accumulation_steps 1 \
25
+ --evaluation_strategy "no" \
26
+ --save_strategy "steps" \
27
+ --save_steps 500 \
28
+ --save_total_limit 5 \
29
+ --learning_rate 2e-5 \
30
+ --weight_decay 0. \
31
+ --warmup_ratio 0.05 \
32
+ --lr_scheduler_type "cosine" \
33
+ --logging_steps 1 \
34
+ --tf32 True \
35
+ --model_max_length 4096 \
36
+ --gradient_checkpointing True \
37
+ --dataloader_num_workers 4 \
38
+ --lazy_preprocess True \
39
+ --report_to wandb \
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.6-mistral-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "down_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf2247d527585fc799edb906388c1be818fe3bb61e79cbe1b59d3311b2b6e5e9
3
+ size 708924928
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "freeze_mm_mlp_adapter": false,
10
+ "freeze_mm_vision_resampler": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_aspect_ratio": "anyres",
14
+ "image_crop_resolution": 224,
15
+ "image_grid_pinpoints": [
16
+ [
17
+ 336,
18
+ 672
19
+ ],
20
+ [
21
+ 672,
22
+ 336
23
+ ],
24
+ [
25
+ 672,
26
+ 672
27
+ ],
28
+ [
29
+ 1008,
30
+ 336
31
+ ],
32
+ [
33
+ 336,
34
+ 1008
35
+ ]
36
+ ],
37
+ "image_split_resolution": 224,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 14336,
40
+ "max_position_embeddings": 32768,
41
+ "mm_hidden_size": 1024,
42
+ "mm_patch_merge_type": "spatial_unpad",
43
+ "mm_projector_lr": 2e-05,
44
+ "mm_projector_type": "mlp2x_gelu",
45
+ "mm_resampler_type": null,
46
+ "mm_use_im_patch_token": false,
47
+ "mm_use_im_start_end": false,
48
+ "mm_vision_select_feature": "patch",
49
+ "mm_vision_select_layer": -2,
50
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
51
+ "mm_vision_tower_lr": 2e-06,
52
+ "model_type": "llava_mistral",
53
+ "num_attention_heads": 32,
54
+ "num_hidden_layers": 32,
55
+ "num_key_value_heads": 8,
56
+ "rms_norm_eps": 1e-05,
57
+ "rope_theta": 1000000.0,
58
+ "sliding_window": null,
59
+ "tie_word_embeddings": false,
60
+ "tokenizer_model_max_length": 4096,
61
+ "tokenizer_padding_side": "right",
62
+ "torch_dtype": "bfloat16",
63
+ "transformers_version": "4.37.2",
64
+ "tune_mm_mlp_adapter": false,
65
+ "tune_mm_vision_resampler": false,
66
+ "unfreeze_mm_vision_tower": true,
67
+ "use_cache": true,
68
+ "use_mm_proj": true,
69
+ "vocab_size": 32000
70
+ }
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:122abc8f0749c93d63088c8fbc3c18949d0e6fe8a9c9bc719442920c7224b9fc
3
+ size 41961648
CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/trainer_state.json ADDED
@@ -0,0 +1,2010 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 330,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.1764705882352942e-06,
14
+ "loss": 0.2385,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2.3529411764705885e-06,
20
+ "loss": 0.2477,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 2.3529411764705885e-06,
26
+ "loss": 0.297,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 3.529411764705883e-06,
32
+ "loss": 0.1694,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 4.705882352941177e-06,
38
+ "loss": 0.1294,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 5.882352941176471e-06,
44
+ "loss": 0.1461,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 7.058823529411766e-06,
50
+ "loss": 0.1272,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 7.058823529411766e-06,
56
+ "loss": 0.1176,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 8.23529411764706e-06,
62
+ "loss": 0.0666,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 9.411764705882354e-06,
68
+ "loss": 0.1199,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 1.0588235294117648e-05,
74
+ "loss": 0.1216,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 1.1764705882352942e-05,
80
+ "loss": 0.1258,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 1.2941176470588238e-05,
86
+ "loss": 0.0381,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 1.4117647058823532e-05,
92
+ "loss": 0.0318,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 1.5294117647058822e-05,
98
+ "loss": 0.1278,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 1.647058823529412e-05,
104
+ "loss": 0.1014,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 1.7647058823529414e-05,
110
+ "loss": 0.0555,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.05,
115
+ "learning_rate": 1.8823529411764708e-05,
116
+ "loss": 0.0576,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 2e-05,
122
+ "loss": 0.0987,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 1.9999496293646753e-05,
128
+ "loss": 0.1177,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.06,
133
+ "learning_rate": 1.999798522533102e-05,
134
+ "loss": 0.1623,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 1.9995466947279753e-05,
140
+ "loss": 0.0899,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 1.9991941713187477e-05,
146
+ "loss": 0.0615,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.07,
151
+ "learning_rate": 1.9987409878190752e-05,
152
+ "loss": 0.068,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 1.99818718988324e-05,
158
+ "loss": 0.0909,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 1.9975328333015497e-05,
164
+ "loss": 0.0658,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.08,
169
+ "learning_rate": 1.9967779839947172e-05,
170
+ "loss": 0.0251,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.08,
175
+ "learning_rate": 1.9959227180072216e-05,
176
+ "loss": 0.0526,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 1.9949671214996448e-05,
182
+ "loss": 0.0495,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.09,
187
+ "learning_rate": 1.993911290739993e-05,
188
+ "loss": 0.034,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.09,
193
+ "learning_rate": 1.992755332093999e-05,
194
+ "loss": 0.0678,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 1.9914993620144055e-05,
200
+ "loss": 0.063,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.1,
205
+ "learning_rate": 1.990143507029234e-05,
206
+ "loss": 0.0237,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.1,
211
+ "learning_rate": 1.9886879037290385e-05,
212
+ "loss": 0.0773,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 1.9871326987531453e-05,
218
+ "loss": 0.0357,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 1.98547804877488e-05,
224
+ "loss": 0.1064,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.11,
229
+ "learning_rate": 1.983724120485783e-05,
230
+ "loss": 0.083,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 1.9818710905788195e-05,
236
+ "loss": 0.1053,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 1.9799191457305767e-05,
242
+ "loss": 0.0343,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.12,
247
+ "learning_rate": 1.977868482582459e-05,
248
+ "loss": 0.1018,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.12,
253
+ "learning_rate": 1.9757193077208776e-05,
254
+ "loss": 0.1488,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "learning_rate": 1.9734718376564386e-05,
260
+ "loss": 0.0511,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "learning_rate": 1.9711262988021322e-05,
266
+ "loss": 0.0643,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.13,
271
+ "learning_rate": 1.968682927450523e-05,
272
+ "loss": 0.0184,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.14,
277
+ "learning_rate": 1.9661419697499455e-05,
278
+ "loss": 0.0483,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.14,
283
+ "learning_rate": 1.9635036816797072e-05,
284
+ "loss": 0.1308,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.14,
289
+ "learning_rate": 1.960768329024301e-05,
290
+ "loss": 0.0618,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 1.957936187346628e-05,
296
+ "loss": 0.0513,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.15,
301
+ "learning_rate": 1.955007541960241e-05,
302
+ "loss": 0.0517,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.15,
307
+ "learning_rate": 1.9519826879005964e-05,
308
+ "loss": 0.0638,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.15,
313
+ "learning_rate": 1.948861929895336e-05,
314
+ "loss": 0.0841,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.16,
319
+ "learning_rate": 1.945645582333587e-05,
320
+ "loss": 0.0994,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.16,
325
+ "learning_rate": 1.9423339692342885e-05,
326
+ "loss": 0.0906,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.16,
331
+ "learning_rate": 1.9389274242135528e-05,
332
+ "loss": 0.2008,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.17,
337
+ "learning_rate": 1.9354262904510544e-05,
338
+ "loss": 0.0152,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "learning_rate": 1.9318309206554567e-05,
344
+ "loss": 0.0232,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.17,
349
+ "learning_rate": 1.9281416770288806e-05,
350
+ "loss": 0.057,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.18,
355
+ "learning_rate": 1.924358931230418e-05,
356
+ "loss": 0.1069,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.18,
361
+ "learning_rate": 1.920483064338687e-05,
362
+ "loss": 0.034,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.18,
367
+ "learning_rate": 1.9165144668134426e-05,
368
+ "loss": 0.052,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.18,
373
+ "learning_rate": 1.9124535384562423e-05,
374
+ "loss": 0.1445,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.19,
379
+ "learning_rate": 1.9083006883701688e-05,
380
+ "loss": 0.0578,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.19,
385
+ "learning_rate": 1.904056334918617e-05,
386
+ "loss": 0.0426,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.19,
391
+ "learning_rate": 1.8997209056831462e-05,
392
+ "loss": 0.0214,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.2,
397
+ "learning_rate": 1.8952948374204066e-05,
398
+ "loss": 0.084,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.2,
403
+ "learning_rate": 1.8907785760181392e-05,
404
+ "loss": 0.1055,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.2,
409
+ "learning_rate": 1.8861725764502557e-05,
410
+ "loss": 0.0333,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.21,
415
+ "learning_rate": 1.881477302731006e-05,
416
+ "loss": 0.0334,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.21,
421
+ "learning_rate": 1.87669322786823e-05,
422
+ "loss": 0.0513,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.21,
427
+ "learning_rate": 1.8718208338157082e-05,
428
+ "loss": 0.0324,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.22,
433
+ "learning_rate": 1.866860611424609e-05,
434
+ "loss": 0.033,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.22,
439
+ "learning_rate": 1.8618130603940386e-05,
440
+ "loss": 0.0379,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.22,
445
+ "learning_rate": 1.856678689220701e-05,
446
+ "loss": 0.0403,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.22,
451
+ "learning_rate": 1.851458015147673e-05,
452
+ "loss": 0.0489,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.23,
457
+ "learning_rate": 1.846151564112294e-05,
458
+ "loss": 0.0599,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.23,
463
+ "learning_rate": 1.840759870693184e-05,
464
+ "loss": 0.0654,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.23,
469
+ "learning_rate": 1.8352834780563888e-05,
470
+ "loss": 0.0526,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.24,
475
+ "learning_rate": 1.8297229379006614e-05,
476
+ "loss": 0.0105,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.24,
481
+ "learning_rate": 1.8240788104018824e-05,
482
+ "loss": 0.0394,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.24,
487
+ "learning_rate": 1.8183516641566278e-05,
488
+ "loss": 0.0573,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.25,
493
+ "learning_rate": 1.8125420761248878e-05,
494
+ "loss": 0.0478,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.25,
499
+ "learning_rate": 1.806650631571943e-05,
500
+ "loss": 0.0633,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.25,
505
+ "learning_rate": 1.8006779240094024e-05,
506
+ "loss": 0.0423,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.25,
511
+ "learning_rate": 1.7946245551354156e-05,
512
+ "loss": 0.0618,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.26,
517
+ "learning_rate": 1.7884911347740556e-05,
518
+ "loss": 0.0658,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.26,
523
+ "learning_rate": 1.782278280813882e-05,
524
+ "loss": 0.0485,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.26,
529
+ "learning_rate": 1.775986619145697e-05,
530
+ "loss": 0.0468,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.27,
535
+ "learning_rate": 1.7696167835994927e-05,
536
+ "loss": 0.0558,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.27,
541
+ "learning_rate": 1.7631694158805945e-05,
542
+ "loss": 0.0518,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.27,
547
+ "learning_rate": 1.7566451655050197e-05,
548
+ "loss": 0.0684,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.28,
553
+ "learning_rate": 1.7500446897340408e-05,
554
+ "loss": 0.0304,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.28,
559
+ "learning_rate": 1.7433686535079736e-05,
560
+ "loss": 0.0397,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.28,
565
+ "learning_rate": 1.736617729379191e-05,
566
+ "loss": 0.1084,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.28,
571
+ "learning_rate": 1.7297925974443675e-05,
572
+ "loss": 0.0826,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.29,
577
+ "learning_rate": 1.7228939452759666e-05,
578
+ "loss": 0.0309,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.29,
583
+ "learning_rate": 1.7159224678529734e-05,
584
+ "loss": 0.0348,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.29,
589
+ "learning_rate": 1.7088788674908817e-05,
590
+ "loss": 0.097,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.3,
595
+ "learning_rate": 1.7017638537709426e-05,
596
+ "loss": 0.0897,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.3,
601
+ "learning_rate": 1.6945781434686783e-05,
602
+ "loss": 0.0614,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.3,
607
+ "learning_rate": 1.6873224604816753e-05,
608
+ "loss": 0.08,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.31,
613
+ "learning_rate": 1.679997535756657e-05,
614
+ "loss": 0.0126,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.31,
619
+ "learning_rate": 1.672604107215848e-05,
620
+ "loss": 0.0644,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.31,
625
+ "learning_rate": 1.6651429196826337e-05,
626
+ "loss": 0.0702,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.32,
631
+ "learning_rate": 1.6576147248065268e-05,
632
+ "loss": 0.0809,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.32,
637
+ "learning_rate": 1.6500202809874446e-05,
638
+ "loss": 0.0354,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.32,
643
+ "learning_rate": 1.6423603532993074e-05,
644
+ "loss": 0.1429,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.32,
649
+ "learning_rate": 1.634635713412964e-05,
650
+ "loss": 0.1142,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.33,
655
+ "learning_rate": 1.626847139518452e-05,
656
+ "loss": 0.034,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.33,
661
+ "learning_rate": 1.618995416246601e-05,
662
+ "loss": 0.0818,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.33,
667
+ "learning_rate": 1.6110813345899914e-05,
668
+ "loss": 0.0594,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.34,
673
+ "learning_rate": 1.6031056918232642e-05,
674
+ "loss": 0.0958,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.34,
679
+ "learning_rate": 1.595069291422807e-05,
680
+ "loss": 0.0418,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.34,
685
+ "learning_rate": 1.586972942985807e-05,
686
+ "loss": 0.0315,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.35,
691
+ "learning_rate": 1.5788174621486936e-05,
692
+ "loss": 0.0435,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.35,
697
+ "learning_rate": 1.570603670504969e-05,
698
+ "loss": 0.0596,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.35,
703
+ "learning_rate": 1.570603670504969e-05,
704
+ "loss": 0.048,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.35,
709
+ "learning_rate": 1.5623323955224404e-05,
710
+ "loss": 0.0352,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.36,
715
+ "learning_rate": 1.5540044704598588e-05,
716
+ "loss": 0.0264,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.36,
721
+ "learning_rate": 1.5456207342829777e-05,
722
+ "loss": 0.0378,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.36,
727
+ "learning_rate": 1.5371820315800316e-05,
728
+ "loss": 0.0519,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.37,
733
+ "learning_rate": 1.5286892124766546e-05,
734
+ "loss": 0.0559,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.37,
739
+ "learning_rate": 1.5201431325502332e-05,
740
+ "loss": 0.0708,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.37,
745
+ "learning_rate": 1.5115446527437193e-05,
746
+ "loss": 0.0823,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.38,
751
+ "learning_rate": 1.5028946392788934e-05,
752
+ "loss": 0.0345,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.38,
757
+ "learning_rate": 1.4941939635691036e-05,
758
+ "loss": 0.111,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.38,
763
+ "learning_rate": 1.4854435021314766e-05,
764
+ "loss": 0.0284,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.38,
769
+ "learning_rate": 1.4766441364986162e-05,
770
+ "loss": 0.1226,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.39,
775
+ "learning_rate": 1.467796753129797e-05,
776
+ "loss": 0.022,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.39,
781
+ "learning_rate": 1.4589022433216616e-05,
782
+ "loss": 0.0565,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.39,
787
+ "learning_rate": 1.4499615031184297e-05,
788
+ "loss": 0.0875,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.4,
793
+ "learning_rate": 1.4409754332216303e-05,
794
+ "loss": 0.0457,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.4,
799
+ "learning_rate": 1.431944938899363e-05,
800
+ "loss": 0.0776,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.4,
805
+ "learning_rate": 1.4228709298950998e-05,
806
+ "loss": 0.0397,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.41,
811
+ "learning_rate": 1.4137543203360382e-05,
812
+ "loss": 0.0278,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.41,
817
+ "learning_rate": 1.4045960286410093e-05,
818
+ "loss": 0.0204,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.41,
823
+ "learning_rate": 1.395396977427955e-05,
824
+ "loss": 0.0531,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.42,
829
+ "learning_rate": 1.3861580934209832e-05,
830
+ "loss": 0.0334,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.42,
835
+ "learning_rate": 1.376880307357009e-05,
836
+ "loss": 0.0389,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.42,
841
+ "learning_rate": 1.3675645538919884e-05,
842
+ "loss": 0.0571,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.42,
847
+ "learning_rate": 1.3582117715067628e-05,
848
+ "loss": 0.0352,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.43,
853
+ "learning_rate": 1.3488229024125142e-05,
854
+ "loss": 0.0062,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.43,
859
+ "learning_rate": 1.3393988924558445e-05,
860
+ "loss": 0.0489,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.43,
865
+ "learning_rate": 1.3299406910234917e-05,
866
+ "loss": 0.068,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.44,
871
+ "learning_rate": 1.3204492509466862e-05,
872
+ "loss": 0.0478,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.44,
877
+ "learning_rate": 1.3109255284051615e-05,
878
+ "loss": 0.1145,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.44,
883
+ "learning_rate": 1.3013704828308276e-05,
884
+ "loss": 0.0253,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.45,
889
+ "learning_rate": 1.2917850768111171e-05,
890
+ "loss": 0.0138,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.45,
895
+ "learning_rate": 1.282170275992012e-05,
896
+ "loss": 0.1083,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.45,
901
+ "learning_rate": 1.2725270489807637e-05,
902
+ "loss": 0.0708,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.45,
907
+ "learning_rate": 1.2628563672483147e-05,
908
+ "loss": 0.0144,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.46,
913
+ "learning_rate": 1.2531592050314308e-05,
914
+ "loss": 0.0628,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.46,
919
+ "learning_rate": 1.2434365392345553e-05,
920
+ "loss": 0.0475,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.46,
925
+ "learning_rate": 1.2336893493313946e-05,
926
+ "loss": 0.0161,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.47,
931
+ "learning_rate": 1.223918617266245e-05,
932
+ "loss": 0.084,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.47,
937
+ "learning_rate": 1.2141253273550698e-05,
938
+ "loss": 0.0494,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.47,
943
+ "learning_rate": 1.2043104661863386e-05,
944
+ "loss": 0.0293,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.48,
949
+ "learning_rate": 1.1944750225216363e-05,
950
+ "loss": 0.0837,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.48,
955
+ "learning_rate": 1.1846199871960557e-05,
956
+ "loss": 0.0479,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.48,
961
+ "learning_rate": 1.1747463530183781e-05,
962
+ "loss": 0.0752,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.48,
967
+ "learning_rate": 1.1648551146710557e-05,
968
+ "loss": 0.0242,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.49,
973
+ "learning_rate": 1.1549472686100079e-05,
974
+ "loss": 0.0322,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.49,
979
+ "learning_rate": 1.145023812964237e-05,
980
+ "loss": 0.0812,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.49,
985
+ "learning_rate": 1.1350857474352734e-05,
986
+ "loss": 0.0133,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.5,
991
+ "learning_rate": 1.1251340731964664e-05,
992
+ "loss": 0.093,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.5,
997
+ "learning_rate": 1.1151697927921242e-05,
998
+ "loss": 0.0377,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.5,
1003
+ "learning_rate": 1.1051939100365154e-05,
1004
+ "loss": 0.0561,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.51,
1009
+ "learning_rate": 1.0952074299127451e-05,
1010
+ "loss": 0.0556,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.51,
1015
+ "learning_rate": 1.0852113584715103e-05,
1016
+ "loss": 0.0567,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.51,
1021
+ "learning_rate": 1.0752067027297486e-05,
1022
+ "loss": 0.0722,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.52,
1027
+ "learning_rate": 1.065194470569193e-05,
1028
+ "loss": 0.0419,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.52,
1033
+ "learning_rate": 1.0551756706348331e-05,
1034
+ "loss": 0.04,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.52,
1039
+ "learning_rate": 1.0451513122333042e-05,
1040
+ "loss": 0.0227,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.52,
1045
+ "learning_rate": 1.035122405231209e-05,
1046
+ "loss": 0.0136,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.53,
1051
+ "learning_rate": 1.0250899599533833e-05,
1052
+ "loss": 0.0613,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.53,
1057
+ "learning_rate": 1.0150549870811108e-05,
1058
+ "loss": 0.02,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.53,
1063
+ "learning_rate": 1.0050184975503104e-05,
1064
+ "loss": 0.0232,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.54,
1069
+ "learning_rate": 9.949815024496901e-06,
1070
+ "loss": 0.0229,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.54,
1075
+ "learning_rate": 9.849450129188895e-06,
1076
+ "loss": 0.0483,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.54,
1081
+ "learning_rate": 9.74910040046617e-06,
1082
+ "loss": 0.0153,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.55,
1087
+ "learning_rate": 9.648775947687914e-06,
1088
+ "loss": 0.0121,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.55,
1093
+ "learning_rate": 9.548486877666963e-06,
1094
+ "loss": 0.0603,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.55,
1099
+ "learning_rate": 9.448243293651676e-06,
1100
+ "loss": 0.0291,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.55,
1105
+ "learning_rate": 9.348055294308074e-06,
1106
+ "loss": 0.0458,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.56,
1111
+ "learning_rate": 9.247932972702514e-06,
1112
+ "loss": 0.0438,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.56,
1117
+ "learning_rate": 9.147886415284903e-06,
1118
+ "loss": 0.0337,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.56,
1123
+ "learning_rate": 9.047925700872552e-06,
1124
+ "loss": 0.0527,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.57,
1129
+ "learning_rate": 8.948060899634846e-06,
1130
+ "loss": 0.0457,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.57,
1135
+ "learning_rate": 8.848302072078762e-06,
1136
+ "loss": 0.0354,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.57,
1141
+ "learning_rate": 8.748659268035339e-06,
1142
+ "loss": 0.0153,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.58,
1147
+ "learning_rate": 8.649142525647271e-06,
1148
+ "loss": 0.1229,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.58,
1153
+ "learning_rate": 8.549761870357633e-06,
1154
+ "loss": 0.0149,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.58,
1159
+ "learning_rate": 8.450527313899923e-06,
1160
+ "loss": 0.042,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.58,
1165
+ "learning_rate": 8.351448853289448e-06,
1166
+ "loss": 0.0146,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.59,
1171
+ "learning_rate": 8.25253646981622e-06,
1172
+ "loss": 0.0145,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.59,
1177
+ "learning_rate": 8.153800128039441e-06,
1178
+ "loss": 0.0691,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.59,
1183
+ "learning_rate": 8.05524977478364e-06,
1184
+ "loss": 0.0165,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.6,
1189
+ "learning_rate": 7.956895338136618e-06,
1190
+ "loss": 0.0776,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.6,
1195
+ "learning_rate": 7.858746726449309e-06,
1196
+ "loss": 0.046,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.6,
1201
+ "learning_rate": 7.760813827337555e-06,
1202
+ "loss": 0.0511,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.61,
1207
+ "learning_rate": 7.663106506686057e-06,
1208
+ "loss": 0.056,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.61,
1213
+ "learning_rate": 7.565634607654453e-06,
1214
+ "loss": 0.0084,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.61,
1219
+ "learning_rate": 7.468407949685695e-06,
1220
+ "loss": 0.0492,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.62,
1225
+ "learning_rate": 7.371436327516854e-06,
1226
+ "loss": 0.0472,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.62,
1231
+ "learning_rate": 7.274729510192367e-06,
1232
+ "loss": 0.0826,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.62,
1237
+ "learning_rate": 7.1782972400798825e-06,
1238
+ "loss": 0.062,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.62,
1243
+ "learning_rate": 7.082149231888833e-06,
1244
+ "loss": 0.0373,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.63,
1249
+ "learning_rate": 6.986295171691727e-06,
1250
+ "loss": 0.0227,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.63,
1255
+ "learning_rate": 6.890744715948388e-06,
1256
+ "loss": 0.029,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.63,
1261
+ "learning_rate": 6.795507490533142e-06,
1262
+ "loss": 0.0606,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.64,
1267
+ "learning_rate": 6.700593089765086e-06,
1268
+ "loss": 0.0784,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.64,
1273
+ "learning_rate": 6.606011075441556e-06,
1274
+ "loss": 0.0254,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.64,
1279
+ "learning_rate": 6.511770975874862e-06,
1280
+ "loss": 0.0669,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.65,
1285
+ "learning_rate": 6.417882284932373e-06,
1286
+ "loss": 0.0754,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.65,
1291
+ "learning_rate": 6.324354461080121e-06,
1292
+ "loss": 0.0171,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.65,
1297
+ "learning_rate": 6.231196926429913e-06,
1298
+ "loss": 0.054,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.65,
1303
+ "learning_rate": 6.138419065790169e-06,
1304
+ "loss": 0.0068,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.66,
1309
+ "learning_rate": 6.046030225720456e-06,
1310
+ "loss": 0.0406,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.66,
1315
+ "learning_rate": 5.95403971358991e-06,
1316
+ "loss": 0.0413,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.66,
1321
+ "learning_rate": 5.86245679663962e-06,
1322
+ "loss": 0.0359,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.67,
1327
+ "learning_rate": 5.7712907010490036e-06,
1328
+ "loss": 0.0398,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.67,
1333
+ "learning_rate": 5.680550611006372e-06,
1334
+ "loss": 0.0679,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.67,
1339
+ "learning_rate": 5.590245667783701e-06,
1340
+ "loss": 0.0356,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.68,
1345
+ "learning_rate": 5.5003849688157075e-06,
1346
+ "loss": 0.0169,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.68,
1351
+ "learning_rate": 5.4109775667833866e-06,
1352
+ "loss": 0.0432,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.68,
1357
+ "learning_rate": 5.322032468702037e-06,
1358
+ "loss": 0.012,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.68,
1363
+ "learning_rate": 5.233558635013842e-06,
1364
+ "loss": 0.0554,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.69,
1369
+ "learning_rate": 5.145564978685234e-06,
1370
+ "loss": 0.065,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.69,
1375
+ "learning_rate": 5.058060364308965e-06,
1376
+ "loss": 0.0139,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.69,
1381
+ "learning_rate": 4.971053607211069e-06,
1382
+ "loss": 0.0117,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.7,
1387
+ "learning_rate": 4.884553472562809e-06,
1388
+ "loss": 0.0763,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.7,
1393
+ "learning_rate": 4.7985686744976714e-06,
1394
+ "loss": 0.0341,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.7,
1399
+ "learning_rate": 4.713107875233459e-06,
1400
+ "loss": 0.0602,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.71,
1405
+ "learning_rate": 4.628179684199685e-06,
1406
+ "loss": 0.0102,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.71,
1411
+ "learning_rate": 4.543792657170228e-06,
1412
+ "loss": 0.0552,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.71,
1417
+ "learning_rate": 4.459955295401415e-06,
1418
+ "loss": 0.0356,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.72,
1423
+ "learning_rate": 4.376676044775601e-06,
1424
+ "loss": 0.0439,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.72,
1429
+ "learning_rate": 4.293963294950313e-06,
1430
+ "loss": 0.0109,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.72,
1435
+ "learning_rate": 4.211825378513066e-06,
1436
+ "loss": 0.0224,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.72,
1441
+ "learning_rate": 4.130270570141931e-06,
1442
+ "loss": 0.0378,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.73,
1447
+ "learning_rate": 4.0493070857719305e-06,
1448
+ "loss": 0.0714,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.73,
1453
+ "learning_rate": 3.968943081767358e-06,
1454
+ "loss": 0.0165,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.73,
1459
+ "learning_rate": 3.889186654100089e-06,
1460
+ "loss": 0.0637,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.74,
1465
+ "learning_rate": 3.81004583753399e-06,
1466
+ "loss": 0.0066,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.74,
1471
+ "learning_rate": 3.7315286048154862e-06,
1472
+ "loss": 0.0178,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.74,
1477
+ "learning_rate": 3.6536428658703594e-06,
1478
+ "loss": 0.0485,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.75,
1483
+ "learning_rate": 3.576396467006925e-06,
1484
+ "loss": 0.0283,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.75,
1489
+ "learning_rate": 3.4997971901255588e-06,
1490
+ "loss": 0.0694,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.75,
1495
+ "learning_rate": 3.4238527519347353e-06,
1496
+ "loss": 0.0552,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.75,
1501
+ "learning_rate": 3.3485708031736698e-06,
1502
+ "loss": 0.0436,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.76,
1507
+ "learning_rate": 3.2739589278415252e-06,
1508
+ "loss": 0.0881,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.76,
1513
+ "learning_rate": 3.2000246424334315e-06,
1514
+ "loss": 0.039,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.76,
1519
+ "learning_rate": 3.1267753951832523e-06,
1520
+ "loss": 0.0411,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.77,
1525
+ "learning_rate": 3.0542185653132216e-06,
1526
+ "loss": 0.0676,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.77,
1531
+ "learning_rate": 2.982361462290575e-06,
1532
+ "loss": 0.0206,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.77,
1537
+ "learning_rate": 2.9112113250911844e-06,
1538
+ "loss": 0.0827,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.78,
1543
+ "learning_rate": 2.8407753214702694e-06,
1544
+ "loss": 0.0102,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.78,
1549
+ "learning_rate": 2.7710605472403373e-06,
1550
+ "loss": 0.0229,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.78,
1555
+ "learning_rate": 2.702074025556327e-06,
1556
+ "loss": 0.0196,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.78,
1561
+ "learning_rate": 2.6338227062080924e-06,
1562
+ "loss": 0.0625,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.79,
1567
+ "learning_rate": 2.566313464920265e-06,
1568
+ "loss": 0.0595,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.79,
1573
+ "learning_rate": 2.4995531026595952e-06,
1574
+ "loss": 0.0147,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.79,
1579
+ "learning_rate": 2.4335483449498053e-06,
1580
+ "loss": 0.0544,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.8,
1585
+ "learning_rate": 2.3683058411940563e-06,
1586
+ "loss": 0.0453,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.8,
1591
+ "learning_rate": 2.3038321640050763e-06,
1592
+ "loss": 0.0609,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.8,
1597
+ "learning_rate": 2.2401338085430326e-06,
1598
+ "loss": 0.0504,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.81,
1603
+ "learning_rate": 2.177217191861183e-06,
1604
+ "loss": 0.0248,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.81,
1609
+ "learning_rate": 2.115088652259446e-06,
1610
+ "loss": 0.0616,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.81,
1615
+ "learning_rate": 2.053754448645846e-06,
1616
+ "loss": 0.0408,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.82,
1621
+ "learning_rate": 1.9932207599059782e-06,
1622
+ "loss": 0.0444,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.82,
1627
+ "learning_rate": 1.933493684280574e-06,
1628
+ "loss": 0.0632,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.82,
1633
+ "learning_rate": 1.8745792387511241e-06,
1634
+ "loss": 0.019,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.82,
1639
+ "learning_rate": 1.8164833584337216e-06,
1640
+ "loss": 0.0266,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.83,
1645
+ "learning_rate": 1.75921189598118e-06,
1646
+ "loss": 0.0499,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.83,
1651
+ "learning_rate": 1.7027706209933903e-06,
1652
+ "loss": 0.0379,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.83,
1657
+ "learning_rate": 1.6471652194361131e-06,
1658
+ "loss": 0.0092,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.84,
1663
+ "learning_rate": 1.5924012930681643e-06,
1664
+ "loss": 0.0326,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.84,
1669
+ "learning_rate": 1.5384843588770626e-06,
1670
+ "loss": 0.0179,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.84,
1675
+ "learning_rate": 1.4854198485232696e-06,
1676
+ "loss": 0.0641,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.85,
1681
+ "learning_rate": 1.433213107792991e-06,
1682
+ "loss": 0.0285,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.85,
1687
+ "learning_rate": 1.3818693960596186e-06,
1688
+ "loss": 0.0365,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.85,
1693
+ "learning_rate": 1.3313938857539133e-06,
1694
+ "loss": 0.0873,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.85,
1699
+ "learning_rate": 1.2817916618429194e-06,
1700
+ "loss": 0.0148,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.86,
1705
+ "learning_rate": 1.2330677213177034e-06,
1706
+ "loss": 0.0127,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.86,
1711
+ "learning_rate": 1.1852269726899423e-06,
1712
+ "loss": 0.0028,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.86,
1717
+ "learning_rate": 1.138274235497443e-06,
1718
+ "loss": 0.0241,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.87,
1723
+ "learning_rate": 1.0922142398186097e-06,
1724
+ "loss": 0.0466,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.87,
1729
+ "learning_rate": 1.0470516257959351e-06,
1730
+ "loss": 0.0273,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.87,
1735
+ "learning_rate": 1.00279094316854e-06,
1736
+ "loss": 0.0529,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.88,
1741
+ "learning_rate": 9.594366508138352e-07,
1742
+ "loss": 0.0648,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.88,
1747
+ "learning_rate": 9.169931162983137e-07,
1748
+ "loss": 0.0118,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.88,
1753
+ "learning_rate": 8.754646154375801e-07,
1754
+ "loss": 0.0321,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.88,
1759
+ "learning_rate": 8.348553318655795e-07,
1760
+ "loss": 0.0167,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.89,
1765
+ "learning_rate": 7.951693566131325e-07,
1766
+ "loss": 0.0204,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.89,
1771
+ "learning_rate": 7.564106876958188e-07,
1772
+ "loss": 0.0502,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.89,
1777
+ "learning_rate": 7.185832297111939e-07,
1778
+ "loss": 0.0075,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.9,
1783
+ "learning_rate": 6.816907934454353e-07,
1784
+ "loss": 0.053,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.9,
1789
+ "learning_rate": 6.457370954894582e-07,
1790
+ "loss": 0.0255,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.9,
1795
+ "learning_rate": 6.107257578644721e-07,
1796
+ "loss": 0.0422,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.91,
1801
+ "learning_rate": 5.766603076571164e-07,
1802
+ "loss": 0.0745,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.91,
1807
+ "learning_rate": 5.43544176664137e-07,
1808
+ "loss": 0.0217,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.91,
1813
+ "learning_rate": 5.113807010466432e-07,
1814
+ "loss": 0.0417,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.92,
1819
+ "learning_rate": 4.801731209940375e-07,
1820
+ "loss": 0.0324,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.92,
1825
+ "learning_rate": 4.499245803975927e-07,
1826
+ "loss": 0.0264,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.92,
1831
+ "learning_rate": 4.206381265337189e-07,
1832
+ "loss": 0.0285,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.92,
1837
+ "learning_rate": 3.9231670975699354e-07,
1838
+ "loss": 0.0603,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.93,
1843
+ "learning_rate": 3.649631832029288e-07,
1844
+ "loss": 0.0515,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.93,
1849
+ "learning_rate": 3.385803025005463e-07,
1850
+ "loss": 0.0133,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.93,
1855
+ "learning_rate": 3.1317072549477246e-07,
1856
+ "loss": 0.0106,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.94,
1861
+ "learning_rate": 2.887370119786792e-07,
1862
+ "loss": 0.0492,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.94,
1867
+ "learning_rate": 2.6528162343561593e-07,
1868
+ "loss": 0.0132,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.94,
1873
+ "learning_rate": 2.4280692279122554e-07,
1874
+ "loss": 0.0207,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.95,
1879
+ "learning_rate": 2.2131517417540937e-07,
1880
+ "loss": 0.0301,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.95,
1885
+ "learning_rate": 2.00808542694233e-07,
1886
+ "loss": 0.0294,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.95,
1891
+ "learning_rate": 1.8128909421180506e-07,
1892
+ "loss": 0.0349,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.95,
1897
+ "learning_rate": 1.6275879514217052e-07,
1898
+ "loss": 0.0405,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.96,
1903
+ "learning_rate": 1.4521951225120345e-07,
1904
+ "loss": 0.0464,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.96,
1909
+ "learning_rate": 1.2867301246854757e-07,
1910
+ "loss": 0.0258,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.96,
1915
+ "learning_rate": 1.1312096270961525e-07,
1916
+ "loss": 0.0217,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.97,
1921
+ "learning_rate": 9.856492970766296e-08,
1922
+ "loss": 0.0521,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.97,
1927
+ "learning_rate": 8.50063798559475e-08,
1928
+ "loss": 0.074,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.97,
1933
+ "learning_rate": 7.244667906001202e-08,
1934
+ "loss": 0.0091,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.98,
1939
+ "learning_rate": 6.088709260007153e-08,
1940
+ "loss": 0.0584,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.98,
1945
+ "learning_rate": 5.032878500355498e-08,
1946
+ "loss": 0.0114,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.98,
1951
+ "learning_rate": 4.07728199277857e-08,
1952
+ "loss": 0.0528,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.98,
1957
+ "learning_rate": 3.2220160052828245e-08,
1958
+ "loss": 0.0534,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.99,
1963
+ "learning_rate": 2.467166698450485e-08,
1964
+ "loss": 0.0912,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.99,
1969
+ "learning_rate": 1.812810116760044e-08,
1970
+ "loss": 0.0426,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.99,
1975
+ "learning_rate": 1.2590121809247235e-08,
1976
+ "loss": 0.0501,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 1.0,
1981
+ "learning_rate": 8.05828681252452e-09,
1982
+ "loss": 0.0135,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 1.0,
1987
+ "learning_rate": 4.5330527202480656e-09,
1988
+ "loss": 0.0375,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 1.0,
1993
+ "step": 330,
1994
+ "total_flos": 1006103224320.0,
1995
+ "train_loss": 0.05386477595011732,
1996
+ "train_runtime": 2481.834,
1997
+ "train_samples_per_second": 2.652,
1998
+ "train_steps_per_second": 0.133
1999
+ }
2000
+ ],
2001
+ "logging_steps": 1.0,
2002
+ "max_steps": 330,
2003
+ "num_input_tokens_seen": 0,
2004
+ "num_train_epochs": 1,
2005
+ "save_steps": 500,
2006
+ "total_flos": 1006103224320.0,
2007
+ "train_batch_size": 10,
2008
+ "trial_name": null,
2009
+ "trial_params": null
2010
+ }
CheckGuard Models/wholeimage/bank/finetune_lora_llava_mistral.sh ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # Use first parameter as GPU IDs, default to "0,1,2,3" if not provided
3
+ GPU_IDS=${1:-0,1,2,3}
4
+
5
+
6
+ CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29601\
7
+ llava/train/train_mem.py \
8
+ --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
9
+ --deepspeed ./scripts/zero3.json \
10
+ --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
11
+ --version mistral_instruct \
12
+ --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/bank/bank_dataset.json \
13
+ --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
14
+ --vision_tower openai/clip-vit-large-patch14-336 \
15
+ --mm_projector_type mlp2x_gelu \
16
+ --mm_vision_select_layer -2 \
17
+ --mm_use_im_start_end False \
18
+ --mm_use_im_patch_token False \
19
+ --mm_patch_merge_type spatial_unpad \
20
+ --image_aspect_ratio anyres \
21
+ --group_by_modality_length False \
22
+ --bf16 False \
23
+ --fp16 True \
24
+ --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model \
25
+ --num_train_epochs 1 \
26
+ --per_device_train_batch_size 10 \
27
+ --per_device_eval_batch_size 1 \
28
+ --gradient_accumulation_steps 1 \
29
+ --evaluation_strategy "no" \
30
+ --save_strategy "steps" \
31
+ --save_steps 500 \
32
+ --save_total_limit 5 \
33
+ --learning_rate 2e-5 \
34
+ --weight_decay 0. \
35
+ --warmup_ratio 0.05 \
36
+ --lr_scheduler_type "cosine" \
37
+ --logging_steps 1 \
38
+ --tf32 True \
39
+ --model_max_length 4096 \
40
+ --gradient_checkpointing True \
41
+ --dataloader_num_workers 4 \
42
+ --lazy_preprocess True \
43
+ --report_to wandb \
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.6-mistral-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj",
25
+ "gate_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b234ad29295da4f261427006e770781d152d27e2bd090a65ac32cfb8472dd11b
3
+ size 708924928
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.6-mistral-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj",
25
+ "gate_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c26e454370836d2d8ee1827620ba4d532f3b135ebd1e7fcbb0263a086f241253
3
+ size 1417762896
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3183212032ce3f53bf011c0ea2d72e73d90e4ae83d758f3cb2661945c405d2e
3
+ size 632242
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59f2e280a5a1fb1c30380e867fb4625232d56bf1130fb2ac1bda1c76272752dd
3
+ size 4504787266
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step500
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42d7cdbb5673ea29475539a9e027f8b9828b8bdf3f8f5a3383b13244fc3604a3
3
+ size 14244
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f73b67322f406ba2e53b1ed170e4b3c50a5de49d1b4aa38bda0b32a3724ada
3
+ size 1064
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 4096,
37
+ "pad_token": "<unk>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3021 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9009009009009009,
5
+ "eval_steps": 500,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 7.142857142857143e-07,
14
+ "loss": 0.4237,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 1.4285714285714286e-06,
20
+ "loss": 0.3368,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 2.1428571428571427e-06,
26
+ "loss": 0.214,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 2.8571428571428573e-06,
32
+ "loss": 0.396,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 3.5714285714285718e-06,
38
+ "loss": 0.305,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.2857142857142855e-06,
44
+ "loss": 0.4049,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 5e-06,
50
+ "loss": 0.108,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 5.7142857142857145e-06,
56
+ "loss": 0.2286,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 6.4285714285714295e-06,
62
+ "loss": 0.1443,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 7.1428571428571436e-06,
68
+ "loss": 0.2252,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 7.857142857142858e-06,
74
+ "loss": 0.0747,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 8.571428571428571e-06,
80
+ "loss": 0.1084,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 9.285714285714288e-06,
86
+ "loss": 0.2115,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 1e-05,
92
+ "loss": 0.4742,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 1.0714285714285714e-05,
98
+ "loss": 0.083,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 1.1428571428571429e-05,
104
+ "loss": 0.3392,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.2142857142857142e-05,
110
+ "loss": 0.065,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.2857142857142859e-05,
116
+ "loss": 0.1711,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 1.3571428571428574e-05,
122
+ "loss": 0.0539,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 1.4285714285714287e-05,
128
+ "loss": 0.0701,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 1.5000000000000002e-05,
134
+ "loss": 0.0836,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 1.5714285714285715e-05,
140
+ "loss": 0.1891,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 1.642857142857143e-05,
146
+ "loss": 0.0422,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 1.7142857142857142e-05,
152
+ "loss": 0.2094,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.05,
157
+ "learning_rate": 1.785714285714286e-05,
158
+ "loss": 0.139,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 1.8571428571428575e-05,
164
+ "loss": 0.2214,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 1.928571428571429e-05,
170
+ "loss": 0.1084,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 2e-05,
176
+ "loss": 0.0898,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 1.9999822316445652e-05,
182
+ "loss": 0.0359,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 1.9999289272096886e-05,
188
+ "loss": 0.2648,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.06,
193
+ "learning_rate": 1.9998400885896355e-05,
194
+ "loss": 0.4007,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 1.9997157189414373e-05,
200
+ "loss": 0.235,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 1.999555822684783e-05,
206
+ "loss": 0.0273,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 1.999360405501859e-05,
212
+ "loss": 0.0267,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 1.99912947433715e-05,
218
+ "loss": 0.2619,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 1.9988630373971896e-05,
224
+ "loss": 0.4101,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 1.9985611041502704e-05,
230
+ "loss": 0.1302,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 1.9982236853261067e-05,
236
+ "loss": 0.118,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 1.9978507929154534e-05,
242
+ "loss": 0.0933,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 1.997442440169681e-05,
248
+ "loss": 0.0104,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 1.9969986416003026e-05,
254
+ "loss": 0.1061,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "learning_rate": 1.9965194129784597e-05,
260
+ "loss": 0.1575,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 1.996004771334361e-05,
266
+ "loss": 0.1969,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 1.996004771334361e-05,
272
+ "loss": 0.0492,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 1.9954547349566783e-05,
278
+ "loss": 0.3012,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 1.994869323391895e-05,
284
+ "loss": 0.2185,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 1.994248557443613e-05,
290
+ "loss": 0.1729,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 1.993592459171812e-05,
296
+ "loss": 0.0354,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 1.9929010518920667e-05,
302
+ "loss": 0.3939,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 1.992174360174717e-05,
308
+ "loss": 0.0505,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 1.9914124098439976e-05,
314
+ "loss": 0.0777,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 1.9914124098439976e-05,
320
+ "loss": 0.6651,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.1,
325
+ "learning_rate": 1.9906152279771162e-05,
326
+ "loss": 0.15,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 1.9897828429032946e-05,
332
+ "loss": 0.1416,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 1.9889152842027607e-05,
338
+ "loss": 0.1195,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 1.9880125827056967e-05,
344
+ "loss": 0.0787,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 1.987074770491145e-05,
350
+ "loss": 0.0681,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 1.986101880885867e-05,
356
+ "loss": 0.1337,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.11,
361
+ "learning_rate": 1.9850939484631598e-05,
362
+ "loss": 0.0961,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 1.984051009041626e-05,
368
+ "loss": 0.116,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 1.982973099683902e-05,
374
+ "loss": 0.3853,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 1.9818602586953414e-05,
380
+ "loss": 0.0875,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 1.9807125256226532e-05,
386
+ "loss": 0.3216,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.12,
391
+ "learning_rate": 1.9795299412524948e-05,
392
+ "loss": 0.0752,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 1.9783125476100254e-05,
398
+ "loss": 0.1461,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 1.9770603879574108e-05,
404
+ "loss": 0.075,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 1.975773506792287e-05,
410
+ "loss": 0.0685,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 1.974451949846177e-05,
416
+ "loss": 0.0555,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 1.973095764082869e-05,
422
+ "loss": 0.0171,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.13,
427
+ "learning_rate": 1.9717049976967437e-05,
428
+ "loss": 0.0247,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 1.9702797001110642e-05,
434
+ "loss": 0.0839,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 1.9688199219762183e-05,
440
+ "loss": 0.4163,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 1.96732571516792e-05,
446
+ "loss": 0.1461,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 1.9657971327853644e-05,
452
+ "loss": 0.1457,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.14,
457
+ "learning_rate": 1.964234229149342e-05,
458
+ "loss": 0.0482,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.14,
463
+ "learning_rate": 1.962637059800307e-05,
464
+ "loss": 0.0802,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 1.9610056814964053e-05,
470
+ "loss": 0.0697,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 1.959340152211455e-05,
476
+ "loss": 0.0614,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 1.95764053113289e-05,
482
+ "loss": 0.1004,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 1.9559068786596526e-05,
488
+ "loss": 0.0286,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.15,
493
+ "learning_rate": 1.954139256400049e-05,
494
+ "loss": 0.1162,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 1.952337727169561e-05,
500
+ "loss": 0.0731,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 1.950502354988612e-05,
506
+ "loss": 0.0286,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 1.948633205080292e-05,
512
+ "loss": 0.2425,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 1.9467303438680414e-05,
518
+ "loss": 0.0505,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 1.944793838973289e-05,
524
+ "loss": 0.0922,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.16,
529
+ "learning_rate": 1.9428237592130487e-05,
530
+ "loss": 0.2949,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 1.940820174597476e-05,
536
+ "loss": 0.2807,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 1.9387831563273775e-05,
542
+ "loss": 0.2377,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 1.9367127767916828e-05,
548
+ "loss": 0.2558,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 1.9346091095648712e-05,
554
+ "loss": 0.0871,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.17,
559
+ "learning_rate": 1.932472229404356e-05,
560
+ "loss": 0.2204,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.17,
565
+ "learning_rate": 1.9303022122478303e-05,
566
+ "loss": 0.1174,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 1.9280991352105656e-05,
572
+ "loss": 0.2181,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 1.925863076582674e-05,
578
+ "loss": 0.1251,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 1.9235941158263253e-05,
584
+ "loss": 0.2251,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 1.9212923335729206e-05,
590
+ "loss": 0.1236,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.18,
595
+ "learning_rate": 1.918957811620231e-05,
596
+ "loss": 0.0901,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 1.9165906329294875e-05,
602
+ "loss": 0.1002,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 1.9141908816224356e-05,
608
+ "loss": 0.4397,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.18,
613
+ "learning_rate": 1.9117586429783433e-05,
614
+ "loss": 0.1141,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.18,
619
+ "learning_rate": 1.909294003430972e-05,
620
+ "loss": 0.1842,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.19,
625
+ "learning_rate": 1.906797050565505e-05,
626
+ "loss": 0.0985,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.19,
631
+ "learning_rate": 1.9042678731154337e-05,
632
+ "loss": 0.1533,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 1.901706560959407e-05,
638
+ "loss": 0.145,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.19,
643
+ "learning_rate": 1.8991132051180332e-05,
644
+ "loss": 0.1693,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.19,
649
+ "learning_rate": 1.8964878977506496e-05,
650
+ "loss": 0.2012,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.19,
655
+ "learning_rate": 1.8938307321520453e-05,
656
+ "loss": 0.1286,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.2,
661
+ "learning_rate": 1.8911418027491453e-05,
662
+ "loss": 0.1396,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 1.8884212050976568e-05,
668
+ "loss": 0.0291,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.2,
673
+ "learning_rate": 1.885669035878672e-05,
674
+ "loss": 0.0317,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.2,
679
+ "learning_rate": 1.882885392895232e-05,
680
+ "loss": 0.1143,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.2,
685
+ "learning_rate": 1.8800703750688536e-05,
686
+ "loss": 0.126,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.21,
691
+ "learning_rate": 1.877224082436011e-05,
692
+ "loss": 0.2017,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.21,
697
+ "learning_rate": 1.8743466161445823e-05,
698
+ "loss": 0.0735,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 1.8714380784502553e-05,
704
+ "loss": 0.0527,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.21,
709
+ "learning_rate": 1.8684985727128936e-05,
710
+ "loss": 0.1112,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.21,
715
+ "learning_rate": 1.8655282033928618e-05,
716
+ "loss": 0.3129,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.21,
721
+ "learning_rate": 1.8625270760473164e-05,
722
+ "loss": 0.2827,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.22,
727
+ "learning_rate": 1.8594952973264512e-05,
728
+ "loss": 0.5608,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.22,
733
+ "learning_rate": 1.856432974969711e-05,
734
+ "loss": 0.1465,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.22,
739
+ "learning_rate": 1.8533402178019596e-05,
740
+ "loss": 0.1322,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.22,
745
+ "learning_rate": 1.8502171357296144e-05,
746
+ "loss": 0.0912,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.22,
751
+ "learning_rate": 1.8470638397367397e-05,
752
+ "loss": 0.0419,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.23,
757
+ "learning_rate": 1.8438804418811038e-05,
758
+ "loss": 0.0369,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.23,
763
+ "learning_rate": 1.8406670552901958e-05,
764
+ "loss": 0.0529,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 1.837423794157206e-05,
770
+ "loss": 0.1472,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.23,
775
+ "learning_rate": 1.834150773736967e-05,
776
+ "loss": 0.0425,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.23,
781
+ "learning_rate": 1.8308481103418597e-05,
782
+ "loss": 0.1634,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.23,
787
+ "learning_rate": 1.8275159213376783e-05,
788
+ "loss": 0.0485,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.24,
793
+ "learning_rate": 1.82415432513946e-05,
794
+ "loss": 0.0313,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.24,
799
+ "learning_rate": 1.8207634412072765e-05,
800
+ "loss": 0.1792,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.24,
805
+ "learning_rate": 1.81734339004199e-05,
806
+ "loss": 0.1184,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.24,
811
+ "learning_rate": 1.8138942931809702e-05,
812
+ "loss": 0.2756,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.24,
817
+ "learning_rate": 1.8104162731937746e-05,
818
+ "loss": 0.0635,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.25,
823
+ "learning_rate": 1.8069094536777938e-05,
824
+ "loss": 0.0158,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.25,
829
+ "learning_rate": 1.8033739592538598e-05,
830
+ "loss": 0.2732,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.25,
835
+ "learning_rate": 1.7998099155618147e-05,
836
+ "loss": 0.1428,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.25,
841
+ "learning_rate": 1.7962174492560492e-05,
842
+ "loss": 0.0777,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.25,
847
+ "learning_rate": 1.7925966880009998e-05,
848
+ "loss": 0.1644,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.25,
853
+ "learning_rate": 1.7889477604666124e-05,
854
+ "loss": 0.0999,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.26,
859
+ "learning_rate": 1.785270796323769e-05,
860
+ "loss": 0.0446,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.26,
865
+ "learning_rate": 1.7815659262396825e-05,
866
+ "loss": 0.0647,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.26,
871
+ "learning_rate": 1.7778332818732492e-05,
872
+ "loss": 0.0521,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.26,
877
+ "learning_rate": 1.7740729958703725e-05,
878
+ "loss": 0.2041,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.26,
883
+ "learning_rate": 1.7702852018592493e-05,
884
+ "loss": 0.0149,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.26,
889
+ "learning_rate": 1.7664700344456198e-05,
890
+ "loss": 0.0502,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.27,
895
+ "learning_rate": 1.762627629207986e-05,
896
+ "loss": 0.2027,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.27,
901
+ "learning_rate": 1.758758122692791e-05,
902
+ "loss": 0.0187,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.27,
907
+ "learning_rate": 1.7548616524095697e-05,
908
+ "loss": 0.1248,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.27,
913
+ "learning_rate": 1.7509383568260597e-05,
914
+ "loss": 0.0859,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.27,
919
+ "learning_rate": 1.7469883753632817e-05,
920
+ "loss": 0.0822,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.28,
925
+ "learning_rate": 1.743011848390585e-05,
926
+ "loss": 0.2445,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.28,
931
+ "learning_rate": 1.7390089172206594e-05,
932
+ "loss": 0.2662,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.28,
937
+ "learning_rate": 1.7349797241045115e-05,
938
+ "loss": 0.0984,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.28,
943
+ "learning_rate": 1.730924412226413e-05,
944
+ "loss": 0.0317,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.28,
949
+ "learning_rate": 1.726843125698809e-05,
950
+ "loss": 0.1129,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.28,
955
+ "learning_rate": 1.7227360095571992e-05,
956
+ "loss": 0.1882,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.29,
961
+ "learning_rate": 1.7186032097549822e-05,
962
+ "loss": 0.1099,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.29,
967
+ "learning_rate": 1.7144448731582698e-05,
968
+ "loss": 0.3506,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.29,
973
+ "learning_rate": 1.7102611475406676e-05,
974
+ "loss": 0.0936,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.29,
979
+ "learning_rate": 1.7060521815780225e-05,
980
+ "loss": 0.104,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.29,
985
+ "learning_rate": 1.7018181248431416e-05,
986
+ "loss": 0.168,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.3,
991
+ "learning_rate": 1.6975591278004747e-05,
992
+ "loss": 0.2726,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.3,
997
+ "learning_rate": 1.6932753418007683e-05,
998
+ "loss": 0.0564,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.3,
1003
+ "learning_rate": 1.688966919075687e-05,
1004
+ "loss": 0.2981,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.3,
1009
+ "learning_rate": 1.684634012732403e-05,
1010
+ "loss": 0.0602,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.3,
1015
+ "learning_rate": 1.680276776748157e-05,
1016
+ "loss": 0.0364,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.3,
1021
+ "learning_rate": 1.6758953659647838e-05,
1022
+ "loss": 0.096,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.31,
1027
+ "learning_rate": 1.6714899360832118e-05,
1028
+ "loss": 0.2139,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.31,
1033
+ "learning_rate": 1.667060643657929e-05,
1034
+ "loss": 0.1666,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.31,
1039
+ "learning_rate": 1.66260764609142e-05,
1040
+ "loss": 0.0486,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.31,
1045
+ "learning_rate": 1.658131101628571e-05,
1046
+ "loss": 0.055,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.31,
1051
+ "learning_rate": 1.653631169351049e-05,
1052
+ "loss": 0.0953,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.32,
1057
+ "learning_rate": 1.6491080091716457e-05,
1058
+ "loss": 0.1824,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.32,
1063
+ "learning_rate": 1.6445617818285974e-05,
1064
+ "loss": 0.0226,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.32,
1069
+ "learning_rate": 1.6399926488798702e-05,
1070
+ "loss": 0.0388,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.32,
1075
+ "learning_rate": 1.6354007726974205e-05,
1076
+ "loss": 0.1149,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.32,
1081
+ "learning_rate": 1.630786316461425e-05,
1082
+ "loss": 0.1428,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.32,
1087
+ "learning_rate": 1.6261494441544805e-05,
1088
+ "loss": 0.0445,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.33,
1093
+ "learning_rate": 1.6214903205557774e-05,
1094
+ "loss": 0.0612,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.33,
1099
+ "learning_rate": 1.6168091112352443e-05,
1100
+ "loss": 0.0826,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.33,
1105
+ "learning_rate": 1.612105982547663e-05,
1106
+ "loss": 0.0376,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.33,
1111
+ "learning_rate": 1.607381101626758e-05,
1112
+ "loss": 0.1441,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.33,
1117
+ "learning_rate": 1.6026346363792565e-05,
1118
+ "loss": 0.1089,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.34,
1123
+ "learning_rate": 1.5978667554789216e-05,
1124
+ "loss": 0.0845,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.34,
1129
+ "learning_rate": 1.5930776283605585e-05,
1130
+ "loss": 0.0835,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.34,
1135
+ "learning_rate": 1.5882674252139928e-05,
1136
+ "loss": 0.0762,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.34,
1141
+ "learning_rate": 1.5834363169780227e-05,
1142
+ "loss": 0.067,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.34,
1147
+ "learning_rate": 1.578584475334345e-05,
1148
+ "loss": 0.0327,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.34,
1153
+ "learning_rate": 1.5737120727014535e-05,
1154
+ "loss": 0.0254,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.35,
1159
+ "learning_rate": 1.5688192822285116e-05,
1160
+ "loss": 0.028,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.35,
1165
+ "learning_rate": 1.5639062777892e-05,
1166
+ "loss": 0.1708,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.35,
1171
+ "learning_rate": 1.5589732339755362e-05,
1172
+ "loss": 0.0542,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.35,
1177
+ "learning_rate": 1.5540203260916728e-05,
1178
+ "loss": 0.2358,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.35,
1183
+ "learning_rate": 1.5490477301476648e-05,
1184
+ "loss": 0.1471,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.35,
1189
+ "learning_rate": 1.5440556228532168e-05,
1190
+ "loss": 0.0414,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.36,
1195
+ "learning_rate": 1.5390441816114022e-05,
1196
+ "loss": 0.0754,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.36,
1201
+ "learning_rate": 1.534013584512359e-05,
1202
+ "loss": 0.105,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.36,
1207
+ "learning_rate": 1.5289640103269626e-05,
1208
+ "loss": 0.2052,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.36,
1213
+ "learning_rate": 1.5238956385004703e-05,
1214
+ "loss": 0.2482,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.36,
1219
+ "learning_rate": 1.5188086491461467e-05,
1220
+ "loss": 0.0967,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.37,
1225
+ "learning_rate": 1.5137032230388613e-05,
1226
+ "loss": 0.1314,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.37,
1231
+ "learning_rate": 1.5085795416086655e-05,
1232
+ "loss": 0.2313,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.37,
1237
+ "learning_rate": 1.5034377869343453e-05,
1238
+ "loss": 0.1304,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.37,
1243
+ "learning_rate": 1.4982781417369496e-05,
1244
+ "loss": 0.2304,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.37,
1249
+ "learning_rate": 1.4931007893732981e-05,
1250
+ "loss": 0.0508,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.37,
1255
+ "learning_rate": 1.4879059138294647e-05,
1256
+ "loss": 0.1389,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.38,
1261
+ "learning_rate": 1.4826936997142399e-05,
1262
+ "loss": 0.2129,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.38,
1267
+ "learning_rate": 1.4774643322525691e-05,
1268
+ "loss": 0.0201,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.38,
1273
+ "learning_rate": 1.4722179972789725e-05,
1274
+ "loss": 0.1064,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.38,
1279
+ "learning_rate": 1.466954881230939e-05,
1280
+ "loss": 0.0459,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.38,
1285
+ "learning_rate": 1.4616751711423016e-05,
1286
+ "loss": 0.2229,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.39,
1291
+ "learning_rate": 1.4563790546365914e-05,
1292
+ "loss": 0.1464,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.39,
1297
+ "learning_rate": 1.4510667199203697e-05,
1298
+ "loss": 0.0558,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.39,
1303
+ "learning_rate": 1.4457383557765385e-05,
1304
+ "loss": 0.0214,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.39,
1309
+ "learning_rate": 1.4403941515576344e-05,
1310
+ "loss": 0.1551,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.39,
1315
+ "learning_rate": 1.4350342971790979e-05,
1316
+ "loss": 0.2093,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.39,
1321
+ "learning_rate": 1.4296589831125234e-05,
1322
+ "loss": 0.0453,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.4,
1327
+ "learning_rate": 1.4242684003788934e-05,
1328
+ "loss": 0.0317,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.4,
1333
+ "learning_rate": 1.418862740541788e-05,
1334
+ "loss": 0.1334,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.4,
1339
+ "learning_rate": 1.4134421957005775e-05,
1340
+ "loss": 0.0185,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.4,
1345
+ "learning_rate": 1.4080069584835971e-05,
1346
+ "loss": 0.087,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.4,
1351
+ "learning_rate": 1.4025572220412998e-05,
1352
+ "loss": 0.1747,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.41,
1357
+ "learning_rate": 1.3970931800393943e-05,
1358
+ "loss": 0.1168,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.41,
1363
+ "learning_rate": 1.391615026651961e-05,
1364
+ "loss": 0.5095,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.41,
1369
+ "learning_rate": 1.3861229565545532e-05,
1370
+ "loss": 0.1157,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.41,
1375
+ "learning_rate": 1.3806171649172782e-05,
1376
+ "loss": 0.1201,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.41,
1381
+ "learning_rate": 1.3750978473978611e-05,
1382
+ "loss": 0.2232,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.41,
1387
+ "learning_rate": 1.3695652001346928e-05,
1388
+ "loss": 0.1718,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.42,
1393
+ "learning_rate": 1.36401941973986e-05,
1394
+ "loss": 0.0509,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.42,
1399
+ "learning_rate": 1.3584607032921566e-05,
1400
+ "loss": 0.0333,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.42,
1405
+ "learning_rate": 1.3528892483300821e-05,
1406
+ "loss": 0.1811,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.42,
1411
+ "learning_rate": 1.3473052528448203e-05,
1412
+ "loss": 0.1771,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.42,
1417
+ "learning_rate": 1.3417089152732049e-05,
1418
+ "loss": 0.1098,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.43,
1423
+ "learning_rate": 1.3361004344906652e-05,
1424
+ "loss": 0.0566,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.43,
1429
+ "learning_rate": 1.330480009804162e-05,
1430
+ "loss": 0.2864,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.43,
1435
+ "learning_rate": 1.3248478409451017e-05,
1436
+ "loss": 0.0166,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.43,
1441
+ "learning_rate": 1.3192041280622409e-05,
1442
+ "loss": 0.2239,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.43,
1447
+ "learning_rate": 1.3135490717145726e-05,
1448
+ "loss": 0.2247,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.43,
1453
+ "learning_rate": 1.3078828728641994e-05,
1454
+ "loss": 0.1758,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.44,
1459
+ "learning_rate": 1.3022057328691915e-05,
1460
+ "loss": 0.0618,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.44,
1465
+ "learning_rate": 1.2965178534764311e-05,
1466
+ "loss": 0.1204,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.44,
1471
+ "learning_rate": 1.2908194368144437e-05,
1472
+ "loss": 0.0233,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.44,
1477
+ "learning_rate": 1.285110685386215e-05,
1478
+ "loss": 0.0387,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.44,
1483
+ "learning_rate": 1.2793918020619937e-05,
1484
+ "loss": 0.0791,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.45,
1489
+ "learning_rate": 1.2736629900720832e-05,
1490
+ "loss": 0.0106,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.45,
1495
+ "learning_rate": 1.2679244529996182e-05,
1496
+ "loss": 0.042,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.45,
1501
+ "learning_rate": 1.262176394773332e-05,
1502
+ "loss": 0.0725,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.45,
1507
+ "learning_rate": 1.256419019660308e-05,
1508
+ "loss": 0.0834,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.45,
1513
+ "learning_rate": 1.2506525322587207e-05,
1514
+ "loss": 0.0432,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.45,
1519
+ "learning_rate": 1.2448771374905655e-05,
1520
+ "loss": 0.177,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.46,
1525
+ "learning_rate": 1.2390930405943766e-05,
1526
+ "loss": 0.0887,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.46,
1531
+ "learning_rate": 1.233300447117933e-05,
1532
+ "loss": 0.0152,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.46,
1537
+ "learning_rate": 1.2274995629109545e-05,
1538
+ "loss": 0.0317,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.46,
1543
+ "learning_rate": 1.2216905941177854e-05,
1544
+ "loss": 0.0268,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.46,
1549
+ "learning_rate": 1.215873747170071e-05,
1550
+ "loss": 0.1685,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.46,
1555
+ "learning_rate": 1.2100492287794186e-05,
1556
+ "loss": 0.1403,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.47,
1561
+ "learning_rate": 1.2042172459300546e-05,
1562
+ "loss": 0.0443,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.47,
1567
+ "learning_rate": 1.198378005871467e-05,
1568
+ "loss": 0.3589,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.47,
1573
+ "learning_rate": 1.192531716111042e-05,
1574
+ "loss": 0.0427,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.47,
1579
+ "learning_rate": 1.1866785844066884e-05,
1580
+ "loss": 0.1103,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.47,
1585
+ "learning_rate": 1.1808188187594549e-05,
1586
+ "loss": 0.2563,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.48,
1591
+ "learning_rate": 1.1749526274061394e-05,
1592
+ "loss": 0.1494,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.48,
1597
+ "learning_rate": 1.1690802188118878e-05,
1598
+ "loss": 0.1105,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.48,
1603
+ "learning_rate": 1.1632018016627859e-05,
1604
+ "loss": 0.082,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.48,
1609
+ "learning_rate": 1.1573175848584455e-05,
1610
+ "loss": 0.3555,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.48,
1615
+ "learning_rate": 1.1514277775045768e-05,
1616
+ "loss": 0.0603,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.48,
1621
+ "learning_rate": 1.1455325889055616e-05,
1622
+ "loss": 0.2883,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.49,
1627
+ "learning_rate": 1.1396322285570119e-05,
1628
+ "loss": 0.054,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.49,
1633
+ "learning_rate": 1.1337269061383278e-05,
1634
+ "loss": 0.0668,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.49,
1639
+ "learning_rate": 1.1278168315052445e-05,
1640
+ "loss": 0.1454,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.49,
1645
+ "learning_rate": 1.1219022146823762e-05,
1646
+ "loss": 0.0619,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.49,
1651
+ "learning_rate": 1.1159832658557498e-05,
1652
+ "loss": 0.0449,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.5,
1657
+ "learning_rate": 1.1100601953653393e-05,
1658
+ "loss": 0.0684,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.5,
1663
+ "learning_rate": 1.1041332136975874e-05,
1664
+ "loss": 0.0273,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.5,
1669
+ "learning_rate": 1.0982025314779287e-05,
1670
+ "loss": 0.2375,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.5,
1675
+ "learning_rate": 1.092268359463302e-05,
1676
+ "loss": 0.0353,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.5,
1681
+ "learning_rate": 1.086330908534663e-05,
1682
+ "loss": 0.1224,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.5,
1687
+ "learning_rate": 1.0803903896894877e-05,
1688
+ "loss": 0.1297,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.51,
1693
+ "learning_rate": 1.0744470140342775e-05,
1694
+ "loss": 0.4464,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.51,
1699
+ "learning_rate": 1.0685009927770542e-05,
1700
+ "loss": 0.103,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.51,
1705
+ "learning_rate": 1.0625525372198564e-05,
1706
+ "loss": 0.0881,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.51,
1711
+ "learning_rate": 1.056601858751229e-05,
1712
+ "loss": 0.075,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.51,
1717
+ "learning_rate": 1.0506491688387128e-05,
1718
+ "loss": 0.0677,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.52,
1723
+ "learning_rate": 1.0446946790213275e-05,
1724
+ "loss": 0.2301,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.52,
1729
+ "learning_rate": 1.0387386009020569e-05,
1730
+ "loss": 0.0737,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.52,
1735
+ "learning_rate": 1.032781146140326e-05,
1736
+ "loss": 0.1262,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.52,
1741
+ "learning_rate": 1.0268225264444829e-05,
1742
+ "loss": 0.0252,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.52,
1747
+ "learning_rate": 1.0208629535642726e-05,
1748
+ "loss": 0.0192,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.52,
1753
+ "learning_rate": 1.0149026392833137e-05,
1754
+ "loss": 0.257,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.53,
1759
+ "learning_rate": 1.0089417954115715e-05,
1760
+ "loss": 0.1876,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.53,
1765
+ "learning_rate": 1.002980633777831e-05,
1766
+ "loss": 0.0341,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.53,
1771
+ "learning_rate": 9.970193662221694e-06,
1772
+ "loss": 0.232,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.53,
1777
+ "learning_rate": 9.910582045884292e-06,
1778
+ "loss": 0.1429,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.53,
1783
+ "learning_rate": 9.850973607166865e-06,
1784
+ "loss": 0.2432,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.54,
1789
+ "learning_rate": 9.791370464357279e-06,
1790
+ "loss": 0.0288,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.54,
1795
+ "learning_rate": 9.731774735555174e-06,
1796
+ "loss": 0.2272,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.54,
1801
+ "learning_rate": 9.672188538596746e-06,
1802
+ "loss": 0.1102,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.54,
1807
+ "learning_rate": 9.612613990979436e-06,
1808
+ "loss": 0.0529,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.54,
1813
+ "learning_rate": 9.553053209786725e-06,
1814
+ "loss": 0.1721,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.54,
1819
+ "learning_rate": 9.493508311612874e-06,
1820
+ "loss": 0.0046,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.55,
1825
+ "learning_rate": 9.433981412487711e-06,
1826
+ "loss": 0.043,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.55,
1831
+ "learning_rate": 9.374474627801439e-06,
1832
+ "loss": 0.0589,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.55,
1837
+ "learning_rate": 9.314990072229461e-06,
1838
+ "loss": 0.0114,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.55,
1843
+ "learning_rate": 9.25552985965723e-06,
1844
+ "loss": 0.1645,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.55,
1849
+ "learning_rate": 9.196096103105127e-06,
1850
+ "loss": 0.2002,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.55,
1855
+ "learning_rate": 9.136690914653377e-06,
1856
+ "loss": 0.057,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.56,
1861
+ "learning_rate": 9.07731640536698e-06,
1862
+ "loss": 0.1744,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.56,
1867
+ "learning_rate": 9.017974685220716e-06,
1868
+ "loss": 0.0343,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.56,
1873
+ "learning_rate": 8.958667863024127e-06,
1874
+ "loss": 0.0405,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.56,
1879
+ "learning_rate": 8.899398046346608e-06,
1880
+ "loss": 0.2055,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.56,
1885
+ "learning_rate": 8.840167341442505e-06,
1886
+ "loss": 0.0673,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.57,
1891
+ "learning_rate": 8.78097785317624e-06,
1892
+ "loss": 0.0291,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.57,
1897
+ "learning_rate": 8.721831684947557e-06,
1898
+ "loss": 0.2443,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.57,
1903
+ "learning_rate": 8.662730938616724e-06,
1904
+ "loss": 0.058,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.57,
1909
+ "learning_rate": 8.603677714429888e-06,
1910
+ "loss": 0.2347,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.57,
1915
+ "learning_rate": 8.54467411094439e-06,
1916
+ "loss": 0.0307,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.57,
1921
+ "learning_rate": 8.485722224954237e-06,
1922
+ "loss": 0.0094,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.58,
1927
+ "learning_rate": 8.426824151415548e-06,
1928
+ "loss": 0.0724,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.58,
1933
+ "learning_rate": 8.367981983372143e-06,
1934
+ "loss": 0.0816,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.58,
1939
+ "learning_rate": 8.309197811881128e-06,
1940
+ "loss": 0.0375,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.58,
1945
+ "learning_rate": 8.250473725938608e-06,
1946
+ "loss": 0.0106,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.58,
1951
+ "learning_rate": 8.191811812405453e-06,
1952
+ "loss": 0.0701,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.59,
1957
+ "learning_rate": 8.133214155933118e-06,
1958
+ "loss": 0.0134,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.59,
1963
+ "learning_rate": 8.074682838889581e-06,
1964
+ "loss": 0.1992,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.59,
1969
+ "learning_rate": 8.01621994128533e-06,
1970
+ "loss": 0.1688,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.59,
1975
+ "learning_rate": 7.95782754069946e-06,
1976
+ "loss": 0.2751,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.59,
1981
+ "learning_rate": 7.899507712205818e-06,
1982
+ "loss": 0.0192,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.59,
1987
+ "learning_rate": 7.841262528299296e-06,
1988
+ "loss": 0.0797,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.6,
1993
+ "learning_rate": 7.783094058822147e-06,
1994
+ "loss": 0.0867,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.6,
1999
+ "learning_rate": 7.72500437089046e-06,
2000
+ "loss": 0.0445,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.6,
2005
+ "learning_rate": 7.666995528820673e-06,
2006
+ "loss": 0.1654,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.6,
2011
+ "learning_rate": 7.609069594056234e-06,
2012
+ "loss": 0.0168,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.6,
2017
+ "learning_rate": 7.551228625094349e-06,
2018
+ "loss": 0.0779,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.61,
2023
+ "learning_rate": 7.493474677412795e-06,
2024
+ "loss": 0.0444,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.61,
2029
+ "learning_rate": 7.435809803396923e-06,
2030
+ "loss": 0.1839,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.61,
2035
+ "learning_rate": 7.37823605226668e-06,
2036
+ "loss": 0.3834,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.61,
2041
+ "learning_rate": 7.320755470003822e-06,
2042
+ "loss": 0.0261,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.61,
2047
+ "learning_rate": 7.263370099279173e-06,
2048
+ "loss": 0.0084,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.61,
2053
+ "learning_rate": 7.2060819793800665e-06,
2054
+ "loss": 0.0469,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.62,
2059
+ "learning_rate": 7.148893146137852e-06,
2060
+ "loss": 0.3605,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.62,
2065
+ "learning_rate": 7.091805631855566e-06,
2066
+ "loss": 0.0621,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.62,
2071
+ "learning_rate": 7.034821465235693e-06,
2072
+ "loss": 0.099,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.62,
2077
+ "learning_rate": 6.977942671308087e-06,
2078
+ "loss": 0.0641,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.62,
2083
+ "learning_rate": 6.921171271358007e-06,
2084
+ "loss": 0.0859,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.63,
2089
+ "learning_rate": 6.864509282854272e-06,
2090
+ "loss": 0.0564,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.63,
2095
+ "learning_rate": 6.8079587193775935e-06,
2096
+ "loss": 0.0405,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.63,
2101
+ "learning_rate": 6.751521590548986e-06,
2102
+ "loss": 0.101,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.63,
2107
+ "learning_rate": 6.695199901958386e-06,
2108
+ "loss": 0.1178,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.63,
2113
+ "learning_rate": 6.638995655093351e-06,
2114
+ "loss": 0.2406,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.63,
2119
+ "learning_rate": 6.582910847267957e-06,
2120
+ "loss": 0.1846,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.64,
2125
+ "learning_rate": 6.526947471551799e-06,
2126
+ "loss": 0.1374,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.64,
2131
+ "learning_rate": 6.471107516699183e-06,
2132
+ "loss": 0.0863,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.64,
2137
+ "learning_rate": 6.415392967078438e-06,
2138
+ "loss": 0.0755,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.64,
2143
+ "learning_rate": 6.3598058026013995e-06,
2144
+ "loss": 0.0732,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.64,
2149
+ "learning_rate": 6.304347998653074e-06,
2150
+ "loss": 0.0555,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.65,
2155
+ "learning_rate": 6.24902152602139e-06,
2156
+ "loss": 0.0475,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.65,
2161
+ "learning_rate": 6.193828350827222e-06,
2162
+ "loss": 0.036,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.65,
2167
+ "learning_rate": 6.1387704344544684e-06,
2168
+ "loss": 0.2679,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.65,
2173
+ "learning_rate": 6.083849733480394e-06,
2174
+ "loss": 0.0661,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.65,
2179
+ "learning_rate": 6.0290681996060605e-06,
2180
+ "loss": 0.0362,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.65,
2185
+ "learning_rate": 5.974427779587004e-06,
2186
+ "loss": 0.0815,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.66,
2191
+ "learning_rate": 5.919930415164033e-06,
2192
+ "loss": 0.0205,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.66,
2197
+ "learning_rate": 5.865578042994227e-06,
2198
+ "loss": 0.0065,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.66,
2203
+ "learning_rate": 5.8113725945821245e-06,
2204
+ "loss": 0.2377,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.66,
2209
+ "learning_rate": 5.757315996211066e-06,
2210
+ "loss": 0.0673,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.66,
2215
+ "learning_rate": 5.703410168874768e-06,
2216
+ "loss": 0.1033,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.66,
2221
+ "learning_rate": 5.649657028209024e-06,
2222
+ "loss": 0.1259,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.67,
2227
+ "learning_rate": 5.5960584844236565e-06,
2228
+ "loss": 0.0052,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.67,
2233
+ "learning_rate": 5.542616442234618e-06,
2234
+ "loss": 0.1048,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.67,
2239
+ "learning_rate": 5.48933280079631e-06,
2240
+ "loss": 0.3342,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.67,
2245
+ "learning_rate": 5.436209453634087e-06,
2246
+ "loss": 0.0725,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.67,
2251
+ "learning_rate": 5.3832482885769855e-06,
2252
+ "loss": 0.1597,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.68,
2257
+ "learning_rate": 5.330451187690614e-06,
2258
+ "loss": 0.2186,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.68,
2263
+ "learning_rate": 5.277820027210279e-06,
2264
+ "loss": 0.0521,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.68,
2269
+ "learning_rate": 5.225356677474309e-06,
2270
+ "loss": 0.0426,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.68,
2275
+ "learning_rate": 5.1730630028576055e-06,
2276
+ "loss": 0.1171,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.68,
2281
+ "learning_rate": 5.120940861705357e-06,
2282
+ "loss": 0.0551,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.68,
2287
+ "learning_rate": 5.068992106267021e-06,
2288
+ "loss": 0.1238,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.69,
2293
+ "learning_rate": 5.017218582630507e-06,
2294
+ "loss": 0.4425,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.69,
2299
+ "learning_rate": 4.965622130656551e-06,
2300
+ "loss": 0.1591,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.69,
2305
+ "learning_rate": 4.914204583913349e-06,
2306
+ "loss": 0.0568,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.69,
2311
+ "learning_rate": 4.862967769611389e-06,
2312
+ "loss": 0.0159,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.69,
2317
+ "learning_rate": 4.8119135085385375e-06,
2318
+ "loss": 0.055,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.7,
2323
+ "learning_rate": 4.7610436149953e-06,
2324
+ "loss": 0.0356,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.7,
2329
+ "learning_rate": 4.710359896730379e-06,
2330
+ "loss": 0.0969,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.7,
2335
+ "learning_rate": 4.659864154876411e-06,
2336
+ "loss": 0.1161,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.7,
2341
+ "learning_rate": 4.609558183885979e-06,
2342
+ "loss": 0.0437,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.7,
2347
+ "learning_rate": 4.559443771467833e-06,
2348
+ "loss": 0.1526,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.7,
2353
+ "learning_rate": 4.509522698523352e-06,
2354
+ "loss": 0.0183,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.71,
2359
+ "learning_rate": 4.4597967390832745e-06,
2360
+ "loss": 0.073,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.71,
2365
+ "learning_rate": 4.4102676602446375e-06,
2366
+ "loss": 0.0411,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.71,
2371
+ "learning_rate": 4.360937222108002e-06,
2372
+ "loss": 0.0524,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.71,
2377
+ "learning_rate": 4.3118071777148865e-06,
2378
+ "loss": 0.1156,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.71,
2383
+ "learning_rate": 4.262879272985468e-06,
2384
+ "loss": 0.0311,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.72,
2389
+ "learning_rate": 4.21415524665655e-06,
2390
+ "loss": 0.1253,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.72,
2395
+ "learning_rate": 4.165636830219776e-06,
2396
+ "loss": 0.0589,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.72,
2401
+ "learning_rate": 4.117325747860077e-06,
2402
+ "loss": 0.0248,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.72,
2407
+ "learning_rate": 4.069223716394419e-06,
2408
+ "loss": 0.0164,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.72,
2413
+ "learning_rate": 4.021332445210785e-06,
2414
+ "loss": 0.1801,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.72,
2419
+ "learning_rate": 3.973653636207437e-06,
2420
+ "loss": 0.107,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.73,
2425
+ "learning_rate": 3.9261889837324245e-06,
2426
+ "loss": 0.0477,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.73,
2431
+ "learning_rate": 3.878940174523371e-06,
2432
+ "loss": 0.0214,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.73,
2437
+ "learning_rate": 3.8319088876475595e-06,
2438
+ "loss": 0.1071,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.73,
2443
+ "learning_rate": 3.785096794442229e-06,
2444
+ "loss": 0.071,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.73,
2449
+ "learning_rate": 3.7385055584552e-06,
2450
+ "loss": 0.0623,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.74,
2455
+ "learning_rate": 3.6921368353857524e-06,
2456
+ "loss": 0.0534,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.74,
2461
+ "learning_rate": 3.645992273025797e-06,
2462
+ "loss": 0.1143,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.74,
2467
+ "learning_rate": 3.6000735112012984e-06,
2468
+ "loss": 0.1056,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.74,
2473
+ "learning_rate": 3.5543821817140313e-06,
2474
+ "loss": 0.0537,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.74,
2479
+ "learning_rate": 3.5089199082835436e-06,
2480
+ "loss": 0.0065,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.74,
2485
+ "learning_rate": 3.463688306489511e-06,
2486
+ "loss": 0.0995,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.75,
2491
+ "learning_rate": 3.418688983714291e-06,
2492
+ "loss": 0.0818,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.75,
2497
+ "learning_rate": 3.373923539085805e-06,
2498
+ "loss": 0.0481,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.75,
2503
+ "learning_rate": 3.329393563420713e-06,
2504
+ "loss": 0.1379,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.75,
2509
+ "learning_rate": 3.285100639167883e-06,
2510
+ "loss": 0.1759,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.75,
2515
+ "learning_rate": 3.2410463403521653e-06,
2516
+ "loss": 0.0599,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.75,
2521
+ "learning_rate": 3.1972322325184347e-06,
2522
+ "loss": 0.0898,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.76,
2527
+ "learning_rate": 3.1536598726759747e-06,
2528
+ "loss": 0.0079,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.76,
2533
+ "learning_rate": 3.110330809243134e-06,
2534
+ "loss": 0.0185,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.76,
2539
+ "learning_rate": 3.0672465819923215e-06,
2540
+ "loss": 0.0792,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.76,
2545
+ "learning_rate": 3.0244087219952565e-06,
2546
+ "loss": 0.1059,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.76,
2551
+ "learning_rate": 2.981818751568586e-06,
2552
+ "loss": 0.044,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.77,
2557
+ "learning_rate": 2.939478184219777e-06,
2558
+ "loss": 0.0766,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.77,
2563
+ "learning_rate": 2.8973885245933287e-06,
2564
+ "loss": 0.1558,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.77,
2569
+ "learning_rate": 2.855551268417305e-06,
2570
+ "loss": 0.0052,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.77,
2575
+ "learning_rate": 2.813967902450179e-06,
2576
+ "loss": 0.0747,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.77,
2581
+ "learning_rate": 2.7726399044280107e-06,
2582
+ "loss": 0.0868,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.77,
2587
+ "learning_rate": 2.7315687430119097e-06,
2588
+ "loss": 0.047,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.78,
2593
+ "learning_rate": 2.6907558777358756e-06,
2594
+ "loss": 0.0721,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.78,
2599
+ "learning_rate": 2.650202758954886e-06,
2600
+ "loss": 0.128,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.78,
2605
+ "learning_rate": 2.6099108277934105e-06,
2606
+ "loss": 0.08,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.78,
2611
+ "learning_rate": 2.5698815160941494e-06,
2612
+ "loss": 0.0901,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.78,
2617
+ "learning_rate": 2.5301162463671845e-06,
2618
+ "loss": 0.0965,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.79,
2623
+ "learning_rate": 2.4906164317394067e-06,
2624
+ "loss": 0.062,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.79,
2629
+ "learning_rate": 2.451383475904304e-06,
2630
+ "loss": 0.0634,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.79,
2635
+ "learning_rate": 2.4124187730720916e-06,
2636
+ "loss": 0.1525,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.79,
2641
+ "learning_rate": 2.3737237079201437e-06,
2642
+ "loss": 0.1071,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.79,
2647
+ "learning_rate": 2.3352996555438036e-06,
2648
+ "loss": 0.0409,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.79,
2653
+ "learning_rate": 2.297147981407509e-06,
2654
+ "loss": 0.1753,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.8,
2659
+ "learning_rate": 2.2592700412962775e-06,
2660
+ "loss": 0.175,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.8,
2665
+ "learning_rate": 2.2216671812675118e-06,
2666
+ "loss": 0.0348,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.8,
2671
+ "learning_rate": 2.184340737603178e-06,
2672
+ "loss": 0.105,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.8,
2677
+ "learning_rate": 2.1472920367623094e-06,
2678
+ "loss": 0.0477,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.8,
2683
+ "learning_rate": 2.1105223953338805e-06,
2684
+ "loss": 0.0176,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.81,
2689
+ "learning_rate": 2.0740331199900053e-06,
2690
+ "loss": 0.6195,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.81,
2695
+ "learning_rate": 2.0378255074395094e-06,
2696
+ "loss": 0.0913,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.81,
2701
+ "learning_rate": 2.001900844381857e-06,
2702
+ "loss": 0.0386,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.81,
2707
+ "learning_rate": 1.9662604074614044e-06,
2708
+ "loss": 0.1309,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.81,
2713
+ "learning_rate": 1.9309054632220645e-06,
2714
+ "loss": 0.0218,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.81,
2719
+ "learning_rate": 1.895837268062256e-06,
2720
+ "loss": 0.0185,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.82,
2725
+ "learning_rate": 1.8610570681903018e-06,
2726
+ "loss": 0.3416,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.82,
2731
+ "learning_rate": 1.8265660995801004e-06,
2732
+ "loss": 0.2817,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.82,
2737
+ "learning_rate": 1.7923655879272395e-06,
2738
+ "loss": 0.0182,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.82,
2743
+ "learning_rate": 1.7584567486054039e-06,
2744
+ "loss": 0.0665,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.82,
2749
+ "learning_rate": 1.7248407866232175e-06,
2750
+ "loss": 0.0403,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.83,
2755
+ "learning_rate": 1.6915188965814034e-06,
2756
+ "loss": 0.017,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.83,
2761
+ "learning_rate": 1.6915188965814034e-06,
2762
+ "loss": 0.3175,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.83,
2767
+ "learning_rate": 1.6584922626303325e-06,
2768
+ "loss": 0.0474,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.83,
2773
+ "learning_rate": 1.6257620584279454e-06,
2774
+ "loss": 0.0881,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.83,
2779
+ "learning_rate": 1.5933294470980443e-06,
2780
+ "loss": 0.0475,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.83,
2785
+ "learning_rate": 1.5611955811889645e-06,
2786
+ "loss": 0.0473,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.84,
2791
+ "learning_rate": 1.5293616026326053e-06,
2792
+ "loss": 0.0143,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.84,
2797
+ "learning_rate": 1.4978286427038602e-06,
2798
+ "loss": 0.1228,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.84,
2803
+ "learning_rate": 1.4665978219804056e-06,
2804
+ "loss": 0.2635,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.84,
2809
+ "learning_rate": 1.435670250302892e-06,
2810
+ "loss": 0.0668,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.84,
2815
+ "learning_rate": 1.405047026735491e-06,
2816
+ "loss": 0.082,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.85,
2821
+ "learning_rate": 1.3747292395268407e-06,
2822
+ "loss": 0.085,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.85,
2827
+ "learning_rate": 1.344717966071385e-06,
2828
+ "loss": 0.1178,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.85,
2833
+ "learning_rate": 1.3150142728710669e-06,
2834
+ "loss": 0.0633,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.85,
2839
+ "learning_rate": 1.2856192154974488e-06,
2840
+ "loss": 0.0229,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.85,
2845
+ "learning_rate": 1.2565338385541792e-06,
2846
+ "loss": 0.0356,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.85,
2851
+ "learning_rate": 1.2277591756398933e-06,
2852
+ "loss": 0.1599,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.86,
2857
+ "learning_rate": 1.1992962493114645e-06,
2858
+ "loss": 0.0168,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.86,
2863
+ "learning_rate": 1.171146071047683e-06,
2864
+ "loss": 0.0626,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.86,
2869
+ "learning_rate": 1.1433096412132838e-06,
2870
+ "loss": 0.1343,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.86,
2875
+ "learning_rate": 1.1157879490234346e-06,
2876
+ "loss": 0.0529,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.86,
2881
+ "learning_rate": 1.088581972508549e-06,
2882
+ "loss": 0.0556,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.86,
2887
+ "learning_rate": 1.0616926784795511e-06,
2888
+ "loss": 0.0903,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.87,
2893
+ "learning_rate": 1.035121022493506e-06,
2894
+ "loss": 0.0993,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.87,
2899
+ "learning_rate": 1.0088679488196695e-06,
2900
+ "loss": 0.0673,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.87,
2905
+ "learning_rate": 9.829343904059342e-07,
2906
+ "loss": 0.018,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.87,
2911
+ "learning_rate": 9.573212688456635e-07,
2912
+ "loss": 0.1005,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.87,
2917
+ "learning_rate": 9.320294943449537e-07,
2918
+ "loss": 0.0859,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.88,
2923
+ "learning_rate": 9.070599656902801e-07,
2924
+ "loss": 0.0361,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.88,
2929
+ "learning_rate": 8.824135702165693e-07,
2930
+ "loss": 0.0256,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.88,
2935
+ "learning_rate": 8.580911837756467e-07,
2936
+ "loss": 0.0652,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.88,
2941
+ "learning_rate": 8.340936707051273e-07,
2942
+ "loss": 0.103,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.88,
2947
+ "learning_rate": 8.10421883797694e-07,
2948
+ "loss": 0.0589,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.88,
2953
+ "learning_rate": 7.87076664270795e-07,
2954
+ "loss": 0.1919,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.89,
2959
+ "learning_rate": 7.6405884173675e-07,
2960
+ "loss": 0.1313,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.89,
2965
+ "learning_rate": 7.413692341732582e-07,
2966
+ "loss": 0.0657,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.89,
2971
+ "learning_rate": 7.190086478943459e-07,
2972
+ "loss": 0.1785,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.89,
2977
+ "learning_rate": 6.969778775217007e-07,
2978
+ "loss": 0.1866,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.89,
2983
+ "learning_rate": 6.752777059564431e-07,
2984
+ "loss": 0.0295,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.9,
2989
+ "learning_rate": 6.539089043512914e-07,
2990
+ "loss": 0.0316,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.9,
2995
+ "learning_rate": 6.328722320831737e-07,
2996
+ "loss": 0.0702,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.9,
3001
+ "learning_rate": 6.121684367262271e-07,
3002
+ "loss": 0.0271,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.9,
3007
+ "learning_rate": 5.917982540252442e-07,
3008
+ "loss": 0.0398,
3009
+ "step": 500
3010
+ }
3011
+ ],
3012
+ "logging_steps": 1.0,
3013
+ "max_steps": 555,
3014
+ "num_input_tokens_seen": 0,
3015
+ "num_train_epochs": 1,
3016
+ "save_steps": 500,
3017
+ "total_flos": 1080325140480.0,
3018
+ "train_batch_size": 10,
3019
+ "trial_name": null,
3020
+ "trial_params": null
3021
+ }
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19850de0da1b4eac2d894ea196e517fb53755d5462a1803598ffe2ca47c1ad86
3
+ size 6968
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "freeze_mm_mlp_adapter": false,
10
+ "freeze_mm_vision_resampler": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_aspect_ratio": "anyres",
14
+ "image_crop_resolution": 224,
15
+ "image_grid_pinpoints": [
16
+ [
17
+ 336,
18
+ 672
19
+ ],
20
+ [
21
+ 672,
22
+ 336
23
+ ],
24
+ [
25
+ 672,
26
+ 672
27
+ ],
28
+ [
29
+ 1008,
30
+ 336
31
+ ],
32
+ [
33
+ 336,
34
+ 1008
35
+ ]
36
+ ],
37
+ "image_split_resolution": 224,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 14336,
40
+ "max_position_embeddings": 32768,
41
+ "mm_hidden_size": 1024,
42
+ "mm_patch_merge_type": "spatial_unpad",
43
+ "mm_projector_lr": 2e-05,
44
+ "mm_projector_type": "mlp2x_gelu",
45
+ "mm_resampler_type": null,
46
+ "mm_use_im_patch_token": false,
47
+ "mm_use_im_start_end": false,
48
+ "mm_vision_select_feature": "patch",
49
+ "mm_vision_select_layer": -2,
50
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
51
+ "mm_vision_tower_lr": 2e-06,
52
+ "model_type": "llava_mistral",
53
+ "num_attention_heads": 32,
54
+ "num_hidden_layers": 32,
55
+ "num_key_value_heads": 8,
56
+ "rms_norm_eps": 1e-05,
57
+ "rope_theta": 1000000.0,
58
+ "sliding_window": null,
59
+ "tie_word_embeddings": false,
60
+ "tokenizer_model_max_length": 4096,
61
+ "tokenizer_padding_side": "right",
62
+ "torch_dtype": "bfloat16",
63
+ "transformers_version": "4.37.2",
64
+ "tune_mm_mlp_adapter": false,
65
+ "tune_mm_vision_resampler": false,
66
+ "unfreeze_mm_vision_tower": true,
67
+ "use_cache": true,
68
+ "use_mm_proj": true,
69
+ "vocab_size": 32000
70
+ }
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fde24a5cdabb49bef91a9dd1ee36c3b2ed72791efc564f6476124852a334852
3
+ size 41961648
CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/trainer_state.json ADDED
@@ -0,0 +1,3360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 555,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 7.142857142857143e-07,
14
+ "loss": 0.4237,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 1.4285714285714286e-06,
20
+ "loss": 0.3368,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 2.1428571428571427e-06,
26
+ "loss": 0.214,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 2.8571428571428573e-06,
32
+ "loss": 0.396,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 3.5714285714285718e-06,
38
+ "loss": 0.305,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.2857142857142855e-06,
44
+ "loss": 0.4049,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 5e-06,
50
+ "loss": 0.108,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 5.7142857142857145e-06,
56
+ "loss": 0.2286,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 6.4285714285714295e-06,
62
+ "loss": 0.1443,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 7.1428571428571436e-06,
68
+ "loss": 0.2252,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 7.857142857142858e-06,
74
+ "loss": 0.0747,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 8.571428571428571e-06,
80
+ "loss": 0.1084,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 9.285714285714288e-06,
86
+ "loss": 0.2115,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 1e-05,
92
+ "loss": 0.4742,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 1.0714285714285714e-05,
98
+ "loss": 0.083,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 1.1428571428571429e-05,
104
+ "loss": 0.3392,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.2142857142857142e-05,
110
+ "loss": 0.065,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.2857142857142859e-05,
116
+ "loss": 0.1711,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.03,
121
+ "learning_rate": 1.3571428571428574e-05,
122
+ "loss": 0.0539,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 1.4285714285714287e-05,
128
+ "loss": 0.0701,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 1.5000000000000002e-05,
134
+ "loss": 0.0836,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 1.5714285714285715e-05,
140
+ "loss": 0.1891,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 1.642857142857143e-05,
146
+ "loss": 0.0422,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 1.7142857142857142e-05,
152
+ "loss": 0.2094,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.05,
157
+ "learning_rate": 1.785714285714286e-05,
158
+ "loss": 0.139,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 1.8571428571428575e-05,
164
+ "loss": 0.2214,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 1.928571428571429e-05,
170
+ "loss": 0.1084,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 2e-05,
176
+ "loss": 0.0898,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 1.9999822316445652e-05,
182
+ "loss": 0.0359,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.05,
187
+ "learning_rate": 1.9999289272096886e-05,
188
+ "loss": 0.2648,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.06,
193
+ "learning_rate": 1.9998400885896355e-05,
194
+ "loss": 0.4007,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 1.9997157189414373e-05,
200
+ "loss": 0.235,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 1.999555822684783e-05,
206
+ "loss": 0.0273,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 1.999360405501859e-05,
212
+ "loss": 0.0267,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 1.99912947433715e-05,
218
+ "loss": 0.2619,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.06,
223
+ "learning_rate": 1.9988630373971896e-05,
224
+ "loss": 0.4101,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 1.9985611041502704e-05,
230
+ "loss": 0.1302,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 1.9982236853261067e-05,
236
+ "loss": 0.118,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 1.9978507929154534e-05,
242
+ "loss": 0.0933,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 1.997442440169681e-05,
248
+ "loss": 0.0104,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.07,
253
+ "learning_rate": 1.9969986416003026e-05,
254
+ "loss": 0.1061,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "learning_rate": 1.9965194129784597e-05,
260
+ "loss": 0.1575,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 1.996004771334361e-05,
266
+ "loss": 0.1969,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 1.996004771334361e-05,
272
+ "loss": 0.0492,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 1.9954547349566783e-05,
278
+ "loss": 0.3012,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.08,
283
+ "learning_rate": 1.994869323391895e-05,
284
+ "loss": 0.2185,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.08,
289
+ "learning_rate": 1.994248557443613e-05,
290
+ "loss": 0.1729,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 1.993592459171812e-05,
296
+ "loss": 0.0354,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 1.9929010518920667e-05,
302
+ "loss": 0.3939,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 1.992174360174717e-05,
308
+ "loss": 0.0505,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 1.9914124098439976e-05,
314
+ "loss": 0.0777,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.09,
319
+ "learning_rate": 1.9914124098439976e-05,
320
+ "loss": 0.6651,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.1,
325
+ "learning_rate": 1.9906152279771162e-05,
326
+ "loss": 0.15,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 1.9897828429032946e-05,
332
+ "loss": 0.1416,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 1.9889152842027607e-05,
338
+ "loss": 0.1195,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 1.9880125827056967e-05,
344
+ "loss": 0.0787,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.1,
349
+ "learning_rate": 1.987074770491145e-05,
350
+ "loss": 0.0681,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.1,
355
+ "learning_rate": 1.986101880885867e-05,
356
+ "loss": 0.1337,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.11,
361
+ "learning_rate": 1.9850939484631598e-05,
362
+ "loss": 0.0961,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 1.984051009041626e-05,
368
+ "loss": 0.116,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 1.982973099683902e-05,
374
+ "loss": 0.3853,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 1.9818602586953414e-05,
380
+ "loss": 0.0875,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.11,
385
+ "learning_rate": 1.9807125256226532e-05,
386
+ "loss": 0.3216,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.12,
391
+ "learning_rate": 1.9795299412524948e-05,
392
+ "loss": 0.0752,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 1.9783125476100254e-05,
398
+ "loss": 0.1461,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 1.9770603879574108e-05,
404
+ "loss": 0.075,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 1.975773506792287e-05,
410
+ "loss": 0.0685,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.12,
415
+ "learning_rate": 1.974451949846177e-05,
416
+ "loss": 0.0555,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.12,
421
+ "learning_rate": 1.973095764082869e-05,
422
+ "loss": 0.0171,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.13,
427
+ "learning_rate": 1.9717049976967437e-05,
428
+ "loss": 0.0247,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 1.9702797001110642e-05,
434
+ "loss": 0.0839,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 1.9688199219762183e-05,
440
+ "loss": 0.4163,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 1.96732571516792e-05,
446
+ "loss": 0.1461,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.13,
451
+ "learning_rate": 1.9657971327853644e-05,
452
+ "loss": 0.1457,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.14,
457
+ "learning_rate": 1.964234229149342e-05,
458
+ "loss": 0.0482,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.14,
463
+ "learning_rate": 1.962637059800307e-05,
464
+ "loss": 0.0802,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 1.9610056814964053e-05,
470
+ "loss": 0.0697,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 1.959340152211455e-05,
476
+ "loss": 0.0614,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.14,
481
+ "learning_rate": 1.95764053113289e-05,
482
+ "loss": 0.1004,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.14,
487
+ "learning_rate": 1.9559068786596526e-05,
488
+ "loss": 0.0286,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.15,
493
+ "learning_rate": 1.954139256400049e-05,
494
+ "loss": 0.1162,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 1.952337727169561e-05,
500
+ "loss": 0.0731,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 1.950502354988612e-05,
506
+ "loss": 0.0286,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.15,
511
+ "learning_rate": 1.948633205080292e-05,
512
+ "loss": 0.2425,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.15,
517
+ "learning_rate": 1.9467303438680414e-05,
518
+ "loss": 0.0505,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.15,
523
+ "learning_rate": 1.944793838973289e-05,
524
+ "loss": 0.0922,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.16,
529
+ "learning_rate": 1.9428237592130487e-05,
530
+ "loss": 0.2949,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 1.940820174597476e-05,
536
+ "loss": 0.2807,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 1.9387831563273775e-05,
542
+ "loss": 0.2377,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.16,
547
+ "learning_rate": 1.9367127767916828e-05,
548
+ "loss": 0.2558,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.16,
553
+ "learning_rate": 1.9346091095648712e-05,
554
+ "loss": 0.0871,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.17,
559
+ "learning_rate": 1.932472229404356e-05,
560
+ "loss": 0.2204,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.17,
565
+ "learning_rate": 1.9303022122478303e-05,
566
+ "loss": 0.1174,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 1.9280991352105656e-05,
572
+ "loss": 0.2181,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.17,
577
+ "learning_rate": 1.925863076582674e-05,
578
+ "loss": 0.1251,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.17,
583
+ "learning_rate": 1.9235941158263253e-05,
584
+ "loss": 0.2251,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.17,
589
+ "learning_rate": 1.9212923335729206e-05,
590
+ "loss": 0.1236,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.18,
595
+ "learning_rate": 1.918957811620231e-05,
596
+ "loss": 0.0901,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 1.9165906329294875e-05,
602
+ "loss": 0.1002,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 1.9141908816224356e-05,
608
+ "loss": 0.4397,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.18,
613
+ "learning_rate": 1.9117586429783433e-05,
614
+ "loss": 0.1141,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.18,
619
+ "learning_rate": 1.909294003430972e-05,
620
+ "loss": 0.1842,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.19,
625
+ "learning_rate": 1.906797050565505e-05,
626
+ "loss": 0.0985,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.19,
631
+ "learning_rate": 1.9042678731154337e-05,
632
+ "loss": 0.1533,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 1.901706560959407e-05,
638
+ "loss": 0.145,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.19,
643
+ "learning_rate": 1.8991132051180332e-05,
644
+ "loss": 0.1693,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.19,
649
+ "learning_rate": 1.8964878977506496e-05,
650
+ "loss": 0.2012,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.19,
655
+ "learning_rate": 1.8938307321520453e-05,
656
+ "loss": 0.1286,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.2,
661
+ "learning_rate": 1.8911418027491453e-05,
662
+ "loss": 0.1396,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 1.8884212050976568e-05,
668
+ "loss": 0.0291,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.2,
673
+ "learning_rate": 1.885669035878672e-05,
674
+ "loss": 0.0317,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.2,
679
+ "learning_rate": 1.882885392895232e-05,
680
+ "loss": 0.1143,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.2,
685
+ "learning_rate": 1.8800703750688536e-05,
686
+ "loss": 0.126,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.21,
691
+ "learning_rate": 1.877224082436011e-05,
692
+ "loss": 0.2017,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.21,
697
+ "learning_rate": 1.8743466161445823e-05,
698
+ "loss": 0.0735,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 1.8714380784502553e-05,
704
+ "loss": 0.0527,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.21,
709
+ "learning_rate": 1.8684985727128936e-05,
710
+ "loss": 0.1112,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.21,
715
+ "learning_rate": 1.8655282033928618e-05,
716
+ "loss": 0.3129,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.21,
721
+ "learning_rate": 1.8625270760473164e-05,
722
+ "loss": 0.2827,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.22,
727
+ "learning_rate": 1.8594952973264512e-05,
728
+ "loss": 0.5608,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.22,
733
+ "learning_rate": 1.856432974969711e-05,
734
+ "loss": 0.1465,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.22,
739
+ "learning_rate": 1.8533402178019596e-05,
740
+ "loss": 0.1322,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.22,
745
+ "learning_rate": 1.8502171357296144e-05,
746
+ "loss": 0.0912,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.22,
751
+ "learning_rate": 1.8470638397367397e-05,
752
+ "loss": 0.0419,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.23,
757
+ "learning_rate": 1.8438804418811038e-05,
758
+ "loss": 0.0369,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.23,
763
+ "learning_rate": 1.8406670552901958e-05,
764
+ "loss": 0.0529,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 1.837423794157206e-05,
770
+ "loss": 0.1472,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.23,
775
+ "learning_rate": 1.834150773736967e-05,
776
+ "loss": 0.0425,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.23,
781
+ "learning_rate": 1.8308481103418597e-05,
782
+ "loss": 0.1634,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.23,
787
+ "learning_rate": 1.8275159213376783e-05,
788
+ "loss": 0.0485,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.24,
793
+ "learning_rate": 1.82415432513946e-05,
794
+ "loss": 0.0313,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.24,
799
+ "learning_rate": 1.8207634412072765e-05,
800
+ "loss": 0.1792,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.24,
805
+ "learning_rate": 1.81734339004199e-05,
806
+ "loss": 0.1184,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.24,
811
+ "learning_rate": 1.8138942931809702e-05,
812
+ "loss": 0.2756,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.24,
817
+ "learning_rate": 1.8104162731937746e-05,
818
+ "loss": 0.0635,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.25,
823
+ "learning_rate": 1.8069094536777938e-05,
824
+ "loss": 0.0158,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.25,
829
+ "learning_rate": 1.8033739592538598e-05,
830
+ "loss": 0.2732,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.25,
835
+ "learning_rate": 1.7998099155618147e-05,
836
+ "loss": 0.1428,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.25,
841
+ "learning_rate": 1.7962174492560492e-05,
842
+ "loss": 0.0777,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.25,
847
+ "learning_rate": 1.7925966880009998e-05,
848
+ "loss": 0.1644,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.25,
853
+ "learning_rate": 1.7889477604666124e-05,
854
+ "loss": 0.0999,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.26,
859
+ "learning_rate": 1.785270796323769e-05,
860
+ "loss": 0.0446,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.26,
865
+ "learning_rate": 1.7815659262396825e-05,
866
+ "loss": 0.0647,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.26,
871
+ "learning_rate": 1.7778332818732492e-05,
872
+ "loss": 0.0521,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.26,
877
+ "learning_rate": 1.7740729958703725e-05,
878
+ "loss": 0.2041,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.26,
883
+ "learning_rate": 1.7702852018592493e-05,
884
+ "loss": 0.0149,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.26,
889
+ "learning_rate": 1.7664700344456198e-05,
890
+ "loss": 0.0502,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.27,
895
+ "learning_rate": 1.762627629207986e-05,
896
+ "loss": 0.2027,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.27,
901
+ "learning_rate": 1.758758122692791e-05,
902
+ "loss": 0.0187,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.27,
907
+ "learning_rate": 1.7548616524095697e-05,
908
+ "loss": 0.1248,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.27,
913
+ "learning_rate": 1.7509383568260597e-05,
914
+ "loss": 0.0859,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.27,
919
+ "learning_rate": 1.7469883753632817e-05,
920
+ "loss": 0.0822,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.28,
925
+ "learning_rate": 1.743011848390585e-05,
926
+ "loss": 0.2445,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.28,
931
+ "learning_rate": 1.7390089172206594e-05,
932
+ "loss": 0.2662,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.28,
937
+ "learning_rate": 1.7349797241045115e-05,
938
+ "loss": 0.0984,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.28,
943
+ "learning_rate": 1.730924412226413e-05,
944
+ "loss": 0.0317,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.28,
949
+ "learning_rate": 1.726843125698809e-05,
950
+ "loss": 0.1129,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.28,
955
+ "learning_rate": 1.7227360095571992e-05,
956
+ "loss": 0.1882,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.29,
961
+ "learning_rate": 1.7186032097549822e-05,
962
+ "loss": 0.1099,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.29,
967
+ "learning_rate": 1.7144448731582698e-05,
968
+ "loss": 0.3506,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.29,
973
+ "learning_rate": 1.7102611475406676e-05,
974
+ "loss": 0.0936,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.29,
979
+ "learning_rate": 1.7060521815780225e-05,
980
+ "loss": 0.104,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.29,
985
+ "learning_rate": 1.7018181248431416e-05,
986
+ "loss": 0.168,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.3,
991
+ "learning_rate": 1.6975591278004747e-05,
992
+ "loss": 0.2726,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.3,
997
+ "learning_rate": 1.6932753418007683e-05,
998
+ "loss": 0.0564,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.3,
1003
+ "learning_rate": 1.688966919075687e-05,
1004
+ "loss": 0.2981,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.3,
1009
+ "learning_rate": 1.684634012732403e-05,
1010
+ "loss": 0.0602,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.3,
1015
+ "learning_rate": 1.680276776748157e-05,
1016
+ "loss": 0.0364,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.3,
1021
+ "learning_rate": 1.6758953659647838e-05,
1022
+ "loss": 0.096,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.31,
1027
+ "learning_rate": 1.6714899360832118e-05,
1028
+ "loss": 0.2139,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.31,
1033
+ "learning_rate": 1.667060643657929e-05,
1034
+ "loss": 0.1666,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.31,
1039
+ "learning_rate": 1.66260764609142e-05,
1040
+ "loss": 0.0486,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.31,
1045
+ "learning_rate": 1.658131101628571e-05,
1046
+ "loss": 0.055,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.31,
1051
+ "learning_rate": 1.653631169351049e-05,
1052
+ "loss": 0.0953,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.32,
1057
+ "learning_rate": 1.6491080091716457e-05,
1058
+ "loss": 0.1824,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.32,
1063
+ "learning_rate": 1.6445617818285974e-05,
1064
+ "loss": 0.0226,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.32,
1069
+ "learning_rate": 1.6399926488798702e-05,
1070
+ "loss": 0.0388,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.32,
1075
+ "learning_rate": 1.6354007726974205e-05,
1076
+ "loss": 0.1149,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.32,
1081
+ "learning_rate": 1.630786316461425e-05,
1082
+ "loss": 0.1428,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.32,
1087
+ "learning_rate": 1.6261494441544805e-05,
1088
+ "loss": 0.0445,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.33,
1093
+ "learning_rate": 1.6214903205557774e-05,
1094
+ "loss": 0.0612,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.33,
1099
+ "learning_rate": 1.6168091112352443e-05,
1100
+ "loss": 0.0826,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.33,
1105
+ "learning_rate": 1.612105982547663e-05,
1106
+ "loss": 0.0376,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.33,
1111
+ "learning_rate": 1.607381101626758e-05,
1112
+ "loss": 0.1441,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.33,
1117
+ "learning_rate": 1.6026346363792565e-05,
1118
+ "loss": 0.1089,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.34,
1123
+ "learning_rate": 1.5978667554789216e-05,
1124
+ "loss": 0.0845,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.34,
1129
+ "learning_rate": 1.5930776283605585e-05,
1130
+ "loss": 0.0835,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.34,
1135
+ "learning_rate": 1.5882674252139928e-05,
1136
+ "loss": 0.0762,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.34,
1141
+ "learning_rate": 1.5834363169780227e-05,
1142
+ "loss": 0.067,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.34,
1147
+ "learning_rate": 1.578584475334345e-05,
1148
+ "loss": 0.0327,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.34,
1153
+ "learning_rate": 1.5737120727014535e-05,
1154
+ "loss": 0.0254,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.35,
1159
+ "learning_rate": 1.5688192822285116e-05,
1160
+ "loss": 0.028,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.35,
1165
+ "learning_rate": 1.5639062777892e-05,
1166
+ "loss": 0.1708,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.35,
1171
+ "learning_rate": 1.5589732339755362e-05,
1172
+ "loss": 0.0542,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.35,
1177
+ "learning_rate": 1.5540203260916728e-05,
1178
+ "loss": 0.2358,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.35,
1183
+ "learning_rate": 1.5490477301476648e-05,
1184
+ "loss": 0.1471,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.35,
1189
+ "learning_rate": 1.5440556228532168e-05,
1190
+ "loss": 0.0414,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.36,
1195
+ "learning_rate": 1.5390441816114022e-05,
1196
+ "loss": 0.0754,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.36,
1201
+ "learning_rate": 1.534013584512359e-05,
1202
+ "loss": 0.105,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.36,
1207
+ "learning_rate": 1.5289640103269626e-05,
1208
+ "loss": 0.2052,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.36,
1213
+ "learning_rate": 1.5238956385004703e-05,
1214
+ "loss": 0.2482,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.36,
1219
+ "learning_rate": 1.5188086491461467e-05,
1220
+ "loss": 0.0967,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.37,
1225
+ "learning_rate": 1.5137032230388613e-05,
1226
+ "loss": 0.1314,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.37,
1231
+ "learning_rate": 1.5085795416086655e-05,
1232
+ "loss": 0.2313,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.37,
1237
+ "learning_rate": 1.5034377869343453e-05,
1238
+ "loss": 0.1304,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.37,
1243
+ "learning_rate": 1.4982781417369496e-05,
1244
+ "loss": 0.2304,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.37,
1249
+ "learning_rate": 1.4931007893732981e-05,
1250
+ "loss": 0.0508,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.37,
1255
+ "learning_rate": 1.4879059138294647e-05,
1256
+ "loss": 0.1389,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.38,
1261
+ "learning_rate": 1.4826936997142399e-05,
1262
+ "loss": 0.2129,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.38,
1267
+ "learning_rate": 1.4774643322525691e-05,
1268
+ "loss": 0.0201,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.38,
1273
+ "learning_rate": 1.4722179972789725e-05,
1274
+ "loss": 0.1064,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.38,
1279
+ "learning_rate": 1.466954881230939e-05,
1280
+ "loss": 0.0459,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.38,
1285
+ "learning_rate": 1.4616751711423016e-05,
1286
+ "loss": 0.2229,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.39,
1291
+ "learning_rate": 1.4563790546365914e-05,
1292
+ "loss": 0.1464,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.39,
1297
+ "learning_rate": 1.4510667199203697e-05,
1298
+ "loss": 0.0558,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.39,
1303
+ "learning_rate": 1.4457383557765385e-05,
1304
+ "loss": 0.0214,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.39,
1309
+ "learning_rate": 1.4403941515576344e-05,
1310
+ "loss": 0.1551,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.39,
1315
+ "learning_rate": 1.4350342971790979e-05,
1316
+ "loss": 0.2093,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.39,
1321
+ "learning_rate": 1.4296589831125234e-05,
1322
+ "loss": 0.0453,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.4,
1327
+ "learning_rate": 1.4242684003788934e-05,
1328
+ "loss": 0.0317,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.4,
1333
+ "learning_rate": 1.418862740541788e-05,
1334
+ "loss": 0.1334,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.4,
1339
+ "learning_rate": 1.4134421957005775e-05,
1340
+ "loss": 0.0185,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.4,
1345
+ "learning_rate": 1.4080069584835971e-05,
1346
+ "loss": 0.087,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.4,
1351
+ "learning_rate": 1.4025572220412998e-05,
1352
+ "loss": 0.1747,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.41,
1357
+ "learning_rate": 1.3970931800393943e-05,
1358
+ "loss": 0.1168,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.41,
1363
+ "learning_rate": 1.391615026651961e-05,
1364
+ "loss": 0.5095,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.41,
1369
+ "learning_rate": 1.3861229565545532e-05,
1370
+ "loss": 0.1157,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.41,
1375
+ "learning_rate": 1.3806171649172782e-05,
1376
+ "loss": 0.1201,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.41,
1381
+ "learning_rate": 1.3750978473978611e-05,
1382
+ "loss": 0.2232,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.41,
1387
+ "learning_rate": 1.3695652001346928e-05,
1388
+ "loss": 0.1718,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.42,
1393
+ "learning_rate": 1.36401941973986e-05,
1394
+ "loss": 0.0509,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.42,
1399
+ "learning_rate": 1.3584607032921566e-05,
1400
+ "loss": 0.0333,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.42,
1405
+ "learning_rate": 1.3528892483300821e-05,
1406
+ "loss": 0.1811,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.42,
1411
+ "learning_rate": 1.3473052528448203e-05,
1412
+ "loss": 0.1771,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.42,
1417
+ "learning_rate": 1.3417089152732049e-05,
1418
+ "loss": 0.1098,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.43,
1423
+ "learning_rate": 1.3361004344906652e-05,
1424
+ "loss": 0.0566,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.43,
1429
+ "learning_rate": 1.330480009804162e-05,
1430
+ "loss": 0.2864,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.43,
1435
+ "learning_rate": 1.3248478409451017e-05,
1436
+ "loss": 0.0166,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.43,
1441
+ "learning_rate": 1.3192041280622409e-05,
1442
+ "loss": 0.2239,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.43,
1447
+ "learning_rate": 1.3135490717145726e-05,
1448
+ "loss": 0.2247,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.43,
1453
+ "learning_rate": 1.3078828728641994e-05,
1454
+ "loss": 0.1758,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.44,
1459
+ "learning_rate": 1.3022057328691915e-05,
1460
+ "loss": 0.0618,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.44,
1465
+ "learning_rate": 1.2965178534764311e-05,
1466
+ "loss": 0.1204,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.44,
1471
+ "learning_rate": 1.2908194368144437e-05,
1472
+ "loss": 0.0233,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.44,
1477
+ "learning_rate": 1.285110685386215e-05,
1478
+ "loss": 0.0387,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.44,
1483
+ "learning_rate": 1.2793918020619937e-05,
1484
+ "loss": 0.0791,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.45,
1489
+ "learning_rate": 1.2736629900720832e-05,
1490
+ "loss": 0.0106,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.45,
1495
+ "learning_rate": 1.2679244529996182e-05,
1496
+ "loss": 0.042,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.45,
1501
+ "learning_rate": 1.262176394773332e-05,
1502
+ "loss": 0.0725,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.45,
1507
+ "learning_rate": 1.256419019660308e-05,
1508
+ "loss": 0.0834,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.45,
1513
+ "learning_rate": 1.2506525322587207e-05,
1514
+ "loss": 0.0432,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.45,
1519
+ "learning_rate": 1.2448771374905655e-05,
1520
+ "loss": 0.177,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.46,
1525
+ "learning_rate": 1.2390930405943766e-05,
1526
+ "loss": 0.0887,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.46,
1531
+ "learning_rate": 1.233300447117933e-05,
1532
+ "loss": 0.0152,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.46,
1537
+ "learning_rate": 1.2274995629109545e-05,
1538
+ "loss": 0.0317,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.46,
1543
+ "learning_rate": 1.2216905941177854e-05,
1544
+ "loss": 0.0268,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.46,
1549
+ "learning_rate": 1.215873747170071e-05,
1550
+ "loss": 0.1685,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.46,
1555
+ "learning_rate": 1.2100492287794186e-05,
1556
+ "loss": 0.1403,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.47,
1561
+ "learning_rate": 1.2042172459300546e-05,
1562
+ "loss": 0.0443,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.47,
1567
+ "learning_rate": 1.198378005871467e-05,
1568
+ "loss": 0.3589,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.47,
1573
+ "learning_rate": 1.192531716111042e-05,
1574
+ "loss": 0.0427,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.47,
1579
+ "learning_rate": 1.1866785844066884e-05,
1580
+ "loss": 0.1103,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.47,
1585
+ "learning_rate": 1.1808188187594549e-05,
1586
+ "loss": 0.2563,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.48,
1591
+ "learning_rate": 1.1749526274061394e-05,
1592
+ "loss": 0.1494,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.48,
1597
+ "learning_rate": 1.1690802188118878e-05,
1598
+ "loss": 0.1105,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.48,
1603
+ "learning_rate": 1.1632018016627859e-05,
1604
+ "loss": 0.082,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.48,
1609
+ "learning_rate": 1.1573175848584455e-05,
1610
+ "loss": 0.3555,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.48,
1615
+ "learning_rate": 1.1514277775045768e-05,
1616
+ "loss": 0.0603,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.48,
1621
+ "learning_rate": 1.1455325889055616e-05,
1622
+ "loss": 0.2883,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.49,
1627
+ "learning_rate": 1.1396322285570119e-05,
1628
+ "loss": 0.054,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.49,
1633
+ "learning_rate": 1.1337269061383278e-05,
1634
+ "loss": 0.0668,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.49,
1639
+ "learning_rate": 1.1278168315052445e-05,
1640
+ "loss": 0.1454,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.49,
1645
+ "learning_rate": 1.1219022146823762e-05,
1646
+ "loss": 0.0619,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.49,
1651
+ "learning_rate": 1.1159832658557498e-05,
1652
+ "loss": 0.0449,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.5,
1657
+ "learning_rate": 1.1100601953653393e-05,
1658
+ "loss": 0.0684,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.5,
1663
+ "learning_rate": 1.1041332136975874e-05,
1664
+ "loss": 0.0273,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.5,
1669
+ "learning_rate": 1.0982025314779287e-05,
1670
+ "loss": 0.2375,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.5,
1675
+ "learning_rate": 1.092268359463302e-05,
1676
+ "loss": 0.0353,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.5,
1681
+ "learning_rate": 1.086330908534663e-05,
1682
+ "loss": 0.1224,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.5,
1687
+ "learning_rate": 1.0803903896894877e-05,
1688
+ "loss": 0.1297,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.51,
1693
+ "learning_rate": 1.0744470140342775e-05,
1694
+ "loss": 0.4464,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.51,
1699
+ "learning_rate": 1.0685009927770542e-05,
1700
+ "loss": 0.103,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.51,
1705
+ "learning_rate": 1.0625525372198564e-05,
1706
+ "loss": 0.0881,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.51,
1711
+ "learning_rate": 1.056601858751229e-05,
1712
+ "loss": 0.075,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.51,
1717
+ "learning_rate": 1.0506491688387128e-05,
1718
+ "loss": 0.0677,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.52,
1723
+ "learning_rate": 1.0446946790213275e-05,
1724
+ "loss": 0.2301,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.52,
1729
+ "learning_rate": 1.0387386009020569e-05,
1730
+ "loss": 0.0737,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.52,
1735
+ "learning_rate": 1.032781146140326e-05,
1736
+ "loss": 0.1262,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.52,
1741
+ "learning_rate": 1.0268225264444829e-05,
1742
+ "loss": 0.0252,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.52,
1747
+ "learning_rate": 1.0208629535642726e-05,
1748
+ "loss": 0.0192,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.52,
1753
+ "learning_rate": 1.0149026392833137e-05,
1754
+ "loss": 0.257,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.53,
1759
+ "learning_rate": 1.0089417954115715e-05,
1760
+ "loss": 0.1876,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.53,
1765
+ "learning_rate": 1.002980633777831e-05,
1766
+ "loss": 0.0341,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.53,
1771
+ "learning_rate": 9.970193662221694e-06,
1772
+ "loss": 0.232,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.53,
1777
+ "learning_rate": 9.910582045884292e-06,
1778
+ "loss": 0.1429,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.53,
1783
+ "learning_rate": 9.850973607166865e-06,
1784
+ "loss": 0.2432,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.54,
1789
+ "learning_rate": 9.791370464357279e-06,
1790
+ "loss": 0.0288,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.54,
1795
+ "learning_rate": 9.731774735555174e-06,
1796
+ "loss": 0.2272,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.54,
1801
+ "learning_rate": 9.672188538596746e-06,
1802
+ "loss": 0.1102,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.54,
1807
+ "learning_rate": 9.612613990979436e-06,
1808
+ "loss": 0.0529,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.54,
1813
+ "learning_rate": 9.553053209786725e-06,
1814
+ "loss": 0.1721,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.54,
1819
+ "learning_rate": 9.493508311612874e-06,
1820
+ "loss": 0.0046,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.55,
1825
+ "learning_rate": 9.433981412487711e-06,
1826
+ "loss": 0.043,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.55,
1831
+ "learning_rate": 9.374474627801439e-06,
1832
+ "loss": 0.0589,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.55,
1837
+ "learning_rate": 9.314990072229461e-06,
1838
+ "loss": 0.0114,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.55,
1843
+ "learning_rate": 9.25552985965723e-06,
1844
+ "loss": 0.1645,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.55,
1849
+ "learning_rate": 9.196096103105127e-06,
1850
+ "loss": 0.2002,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.55,
1855
+ "learning_rate": 9.136690914653377e-06,
1856
+ "loss": 0.057,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.56,
1861
+ "learning_rate": 9.07731640536698e-06,
1862
+ "loss": 0.1744,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.56,
1867
+ "learning_rate": 9.017974685220716e-06,
1868
+ "loss": 0.0343,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.56,
1873
+ "learning_rate": 8.958667863024127e-06,
1874
+ "loss": 0.0405,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.56,
1879
+ "learning_rate": 8.899398046346608e-06,
1880
+ "loss": 0.2055,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.56,
1885
+ "learning_rate": 8.840167341442505e-06,
1886
+ "loss": 0.0673,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.57,
1891
+ "learning_rate": 8.78097785317624e-06,
1892
+ "loss": 0.0291,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.57,
1897
+ "learning_rate": 8.721831684947557e-06,
1898
+ "loss": 0.2443,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.57,
1903
+ "learning_rate": 8.662730938616724e-06,
1904
+ "loss": 0.058,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.57,
1909
+ "learning_rate": 8.603677714429888e-06,
1910
+ "loss": 0.2347,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.57,
1915
+ "learning_rate": 8.54467411094439e-06,
1916
+ "loss": 0.0307,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.57,
1921
+ "learning_rate": 8.485722224954237e-06,
1922
+ "loss": 0.0094,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.58,
1927
+ "learning_rate": 8.426824151415548e-06,
1928
+ "loss": 0.0724,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.58,
1933
+ "learning_rate": 8.367981983372143e-06,
1934
+ "loss": 0.0816,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.58,
1939
+ "learning_rate": 8.309197811881128e-06,
1940
+ "loss": 0.0375,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.58,
1945
+ "learning_rate": 8.250473725938608e-06,
1946
+ "loss": 0.0106,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.58,
1951
+ "learning_rate": 8.191811812405453e-06,
1952
+ "loss": 0.0701,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.59,
1957
+ "learning_rate": 8.133214155933118e-06,
1958
+ "loss": 0.0134,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.59,
1963
+ "learning_rate": 8.074682838889581e-06,
1964
+ "loss": 0.1992,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.59,
1969
+ "learning_rate": 8.01621994128533e-06,
1970
+ "loss": 0.1688,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.59,
1975
+ "learning_rate": 7.95782754069946e-06,
1976
+ "loss": 0.2751,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.59,
1981
+ "learning_rate": 7.899507712205818e-06,
1982
+ "loss": 0.0192,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.59,
1987
+ "learning_rate": 7.841262528299296e-06,
1988
+ "loss": 0.0797,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.6,
1993
+ "learning_rate": 7.783094058822147e-06,
1994
+ "loss": 0.0867,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.6,
1999
+ "learning_rate": 7.72500437089046e-06,
2000
+ "loss": 0.0445,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.6,
2005
+ "learning_rate": 7.666995528820673e-06,
2006
+ "loss": 0.1654,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.6,
2011
+ "learning_rate": 7.609069594056234e-06,
2012
+ "loss": 0.0168,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.6,
2017
+ "learning_rate": 7.551228625094349e-06,
2018
+ "loss": 0.0779,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.61,
2023
+ "learning_rate": 7.493474677412795e-06,
2024
+ "loss": 0.0444,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.61,
2029
+ "learning_rate": 7.435809803396923e-06,
2030
+ "loss": 0.1839,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.61,
2035
+ "learning_rate": 7.37823605226668e-06,
2036
+ "loss": 0.3834,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.61,
2041
+ "learning_rate": 7.320755470003822e-06,
2042
+ "loss": 0.0261,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.61,
2047
+ "learning_rate": 7.263370099279173e-06,
2048
+ "loss": 0.0084,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.61,
2053
+ "learning_rate": 7.2060819793800665e-06,
2054
+ "loss": 0.0469,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.62,
2059
+ "learning_rate": 7.148893146137852e-06,
2060
+ "loss": 0.3605,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.62,
2065
+ "learning_rate": 7.091805631855566e-06,
2066
+ "loss": 0.0621,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.62,
2071
+ "learning_rate": 7.034821465235693e-06,
2072
+ "loss": 0.099,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.62,
2077
+ "learning_rate": 6.977942671308087e-06,
2078
+ "loss": 0.0641,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.62,
2083
+ "learning_rate": 6.921171271358007e-06,
2084
+ "loss": 0.0859,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.63,
2089
+ "learning_rate": 6.864509282854272e-06,
2090
+ "loss": 0.0564,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.63,
2095
+ "learning_rate": 6.8079587193775935e-06,
2096
+ "loss": 0.0405,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.63,
2101
+ "learning_rate": 6.751521590548986e-06,
2102
+ "loss": 0.101,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.63,
2107
+ "learning_rate": 6.695199901958386e-06,
2108
+ "loss": 0.1178,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.63,
2113
+ "learning_rate": 6.638995655093351e-06,
2114
+ "loss": 0.2406,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.63,
2119
+ "learning_rate": 6.582910847267957e-06,
2120
+ "loss": 0.1846,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.64,
2125
+ "learning_rate": 6.526947471551799e-06,
2126
+ "loss": 0.1374,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.64,
2131
+ "learning_rate": 6.471107516699183e-06,
2132
+ "loss": 0.0863,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.64,
2137
+ "learning_rate": 6.415392967078438e-06,
2138
+ "loss": 0.0755,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.64,
2143
+ "learning_rate": 6.3598058026013995e-06,
2144
+ "loss": 0.0732,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.64,
2149
+ "learning_rate": 6.304347998653074e-06,
2150
+ "loss": 0.0555,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.65,
2155
+ "learning_rate": 6.24902152602139e-06,
2156
+ "loss": 0.0475,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.65,
2161
+ "learning_rate": 6.193828350827222e-06,
2162
+ "loss": 0.036,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.65,
2167
+ "learning_rate": 6.1387704344544684e-06,
2168
+ "loss": 0.2679,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.65,
2173
+ "learning_rate": 6.083849733480394e-06,
2174
+ "loss": 0.0661,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.65,
2179
+ "learning_rate": 6.0290681996060605e-06,
2180
+ "loss": 0.0362,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.65,
2185
+ "learning_rate": 5.974427779587004e-06,
2186
+ "loss": 0.0815,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.66,
2191
+ "learning_rate": 5.919930415164033e-06,
2192
+ "loss": 0.0205,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.66,
2197
+ "learning_rate": 5.865578042994227e-06,
2198
+ "loss": 0.0065,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.66,
2203
+ "learning_rate": 5.8113725945821245e-06,
2204
+ "loss": 0.2377,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.66,
2209
+ "learning_rate": 5.757315996211066e-06,
2210
+ "loss": 0.0673,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.66,
2215
+ "learning_rate": 5.703410168874768e-06,
2216
+ "loss": 0.1033,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.66,
2221
+ "learning_rate": 5.649657028209024e-06,
2222
+ "loss": 0.1259,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.67,
2227
+ "learning_rate": 5.5960584844236565e-06,
2228
+ "loss": 0.0052,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.67,
2233
+ "learning_rate": 5.542616442234618e-06,
2234
+ "loss": 0.1048,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.67,
2239
+ "learning_rate": 5.48933280079631e-06,
2240
+ "loss": 0.3342,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.67,
2245
+ "learning_rate": 5.436209453634087e-06,
2246
+ "loss": 0.0725,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.67,
2251
+ "learning_rate": 5.3832482885769855e-06,
2252
+ "loss": 0.1597,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.68,
2257
+ "learning_rate": 5.330451187690614e-06,
2258
+ "loss": 0.2186,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.68,
2263
+ "learning_rate": 5.277820027210279e-06,
2264
+ "loss": 0.0521,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.68,
2269
+ "learning_rate": 5.225356677474309e-06,
2270
+ "loss": 0.0426,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.68,
2275
+ "learning_rate": 5.1730630028576055e-06,
2276
+ "loss": 0.1171,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.68,
2281
+ "learning_rate": 5.120940861705357e-06,
2282
+ "loss": 0.0551,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.68,
2287
+ "learning_rate": 5.068992106267021e-06,
2288
+ "loss": 0.1238,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.69,
2293
+ "learning_rate": 5.017218582630507e-06,
2294
+ "loss": 0.4425,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.69,
2299
+ "learning_rate": 4.965622130656551e-06,
2300
+ "loss": 0.1591,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.69,
2305
+ "learning_rate": 4.914204583913349e-06,
2306
+ "loss": 0.0568,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.69,
2311
+ "learning_rate": 4.862967769611389e-06,
2312
+ "loss": 0.0159,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.69,
2317
+ "learning_rate": 4.8119135085385375e-06,
2318
+ "loss": 0.055,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.7,
2323
+ "learning_rate": 4.7610436149953e-06,
2324
+ "loss": 0.0356,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.7,
2329
+ "learning_rate": 4.710359896730379e-06,
2330
+ "loss": 0.0969,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.7,
2335
+ "learning_rate": 4.659864154876411e-06,
2336
+ "loss": 0.1161,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.7,
2341
+ "learning_rate": 4.609558183885979e-06,
2342
+ "loss": 0.0437,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.7,
2347
+ "learning_rate": 4.559443771467833e-06,
2348
+ "loss": 0.1526,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.7,
2353
+ "learning_rate": 4.509522698523352e-06,
2354
+ "loss": 0.0183,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.71,
2359
+ "learning_rate": 4.4597967390832745e-06,
2360
+ "loss": 0.073,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.71,
2365
+ "learning_rate": 4.4102676602446375e-06,
2366
+ "loss": 0.0411,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.71,
2371
+ "learning_rate": 4.360937222108002e-06,
2372
+ "loss": 0.0524,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.71,
2377
+ "learning_rate": 4.3118071777148865e-06,
2378
+ "loss": 0.1156,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.71,
2383
+ "learning_rate": 4.262879272985468e-06,
2384
+ "loss": 0.0311,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.72,
2389
+ "learning_rate": 4.21415524665655e-06,
2390
+ "loss": 0.1253,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.72,
2395
+ "learning_rate": 4.165636830219776e-06,
2396
+ "loss": 0.0589,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.72,
2401
+ "learning_rate": 4.117325747860077e-06,
2402
+ "loss": 0.0248,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.72,
2407
+ "learning_rate": 4.069223716394419e-06,
2408
+ "loss": 0.0164,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.72,
2413
+ "learning_rate": 4.021332445210785e-06,
2414
+ "loss": 0.1801,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.72,
2419
+ "learning_rate": 3.973653636207437e-06,
2420
+ "loss": 0.107,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.73,
2425
+ "learning_rate": 3.9261889837324245e-06,
2426
+ "loss": 0.0477,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.73,
2431
+ "learning_rate": 3.878940174523371e-06,
2432
+ "loss": 0.0214,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.73,
2437
+ "learning_rate": 3.8319088876475595e-06,
2438
+ "loss": 0.1071,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.73,
2443
+ "learning_rate": 3.785096794442229e-06,
2444
+ "loss": 0.071,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.73,
2449
+ "learning_rate": 3.7385055584552e-06,
2450
+ "loss": 0.0623,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.74,
2455
+ "learning_rate": 3.6921368353857524e-06,
2456
+ "loss": 0.0534,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.74,
2461
+ "learning_rate": 3.645992273025797e-06,
2462
+ "loss": 0.1143,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.74,
2467
+ "learning_rate": 3.6000735112012984e-06,
2468
+ "loss": 0.1056,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.74,
2473
+ "learning_rate": 3.5543821817140313e-06,
2474
+ "loss": 0.0537,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.74,
2479
+ "learning_rate": 3.5089199082835436e-06,
2480
+ "loss": 0.0065,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.74,
2485
+ "learning_rate": 3.463688306489511e-06,
2486
+ "loss": 0.0995,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.75,
2491
+ "learning_rate": 3.418688983714291e-06,
2492
+ "loss": 0.0818,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.75,
2497
+ "learning_rate": 3.373923539085805e-06,
2498
+ "loss": 0.0481,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.75,
2503
+ "learning_rate": 3.329393563420713e-06,
2504
+ "loss": 0.1379,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.75,
2509
+ "learning_rate": 3.285100639167883e-06,
2510
+ "loss": 0.1759,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.75,
2515
+ "learning_rate": 3.2410463403521653e-06,
2516
+ "loss": 0.0599,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.75,
2521
+ "learning_rate": 3.1972322325184347e-06,
2522
+ "loss": 0.0898,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.76,
2527
+ "learning_rate": 3.1536598726759747e-06,
2528
+ "loss": 0.0079,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.76,
2533
+ "learning_rate": 3.110330809243134e-06,
2534
+ "loss": 0.0185,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.76,
2539
+ "learning_rate": 3.0672465819923215e-06,
2540
+ "loss": 0.0792,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.76,
2545
+ "learning_rate": 3.0244087219952565e-06,
2546
+ "loss": 0.1059,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.76,
2551
+ "learning_rate": 2.981818751568586e-06,
2552
+ "loss": 0.044,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.77,
2557
+ "learning_rate": 2.939478184219777e-06,
2558
+ "loss": 0.0766,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.77,
2563
+ "learning_rate": 2.8973885245933287e-06,
2564
+ "loss": 0.1558,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.77,
2569
+ "learning_rate": 2.855551268417305e-06,
2570
+ "loss": 0.0052,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.77,
2575
+ "learning_rate": 2.813967902450179e-06,
2576
+ "loss": 0.0747,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.77,
2581
+ "learning_rate": 2.7726399044280107e-06,
2582
+ "loss": 0.0868,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.77,
2587
+ "learning_rate": 2.7315687430119097e-06,
2588
+ "loss": 0.047,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.78,
2593
+ "learning_rate": 2.6907558777358756e-06,
2594
+ "loss": 0.0721,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.78,
2599
+ "learning_rate": 2.650202758954886e-06,
2600
+ "loss": 0.128,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.78,
2605
+ "learning_rate": 2.6099108277934105e-06,
2606
+ "loss": 0.08,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.78,
2611
+ "learning_rate": 2.5698815160941494e-06,
2612
+ "loss": 0.0901,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.78,
2617
+ "learning_rate": 2.5301162463671845e-06,
2618
+ "loss": 0.0965,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.79,
2623
+ "learning_rate": 2.4906164317394067e-06,
2624
+ "loss": 0.062,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.79,
2629
+ "learning_rate": 2.451383475904304e-06,
2630
+ "loss": 0.0634,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.79,
2635
+ "learning_rate": 2.4124187730720916e-06,
2636
+ "loss": 0.1525,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.79,
2641
+ "learning_rate": 2.3737237079201437e-06,
2642
+ "loss": 0.1071,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.79,
2647
+ "learning_rate": 2.3352996555438036e-06,
2648
+ "loss": 0.0409,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.79,
2653
+ "learning_rate": 2.297147981407509e-06,
2654
+ "loss": 0.1753,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.8,
2659
+ "learning_rate": 2.2592700412962775e-06,
2660
+ "loss": 0.175,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.8,
2665
+ "learning_rate": 2.2216671812675118e-06,
2666
+ "loss": 0.0348,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.8,
2671
+ "learning_rate": 2.184340737603178e-06,
2672
+ "loss": 0.105,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.8,
2677
+ "learning_rate": 2.1472920367623094e-06,
2678
+ "loss": 0.0477,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.8,
2683
+ "learning_rate": 2.1105223953338805e-06,
2684
+ "loss": 0.0176,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.81,
2689
+ "learning_rate": 2.0740331199900053e-06,
2690
+ "loss": 0.6195,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.81,
2695
+ "learning_rate": 2.0378255074395094e-06,
2696
+ "loss": 0.0913,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.81,
2701
+ "learning_rate": 2.001900844381857e-06,
2702
+ "loss": 0.0386,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.81,
2707
+ "learning_rate": 1.9662604074614044e-06,
2708
+ "loss": 0.1309,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.81,
2713
+ "learning_rate": 1.9309054632220645e-06,
2714
+ "loss": 0.0218,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.81,
2719
+ "learning_rate": 1.895837268062256e-06,
2720
+ "loss": 0.0185,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.82,
2725
+ "learning_rate": 1.8610570681903018e-06,
2726
+ "loss": 0.3416,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.82,
2731
+ "learning_rate": 1.8265660995801004e-06,
2732
+ "loss": 0.2817,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.82,
2737
+ "learning_rate": 1.7923655879272395e-06,
2738
+ "loss": 0.0182,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.82,
2743
+ "learning_rate": 1.7584567486054039e-06,
2744
+ "loss": 0.0665,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.82,
2749
+ "learning_rate": 1.7248407866232175e-06,
2750
+ "loss": 0.0403,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.83,
2755
+ "learning_rate": 1.6915188965814034e-06,
2756
+ "loss": 0.017,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.83,
2761
+ "learning_rate": 1.6915188965814034e-06,
2762
+ "loss": 0.3175,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.83,
2767
+ "learning_rate": 1.6584922626303325e-06,
2768
+ "loss": 0.0474,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.83,
2773
+ "learning_rate": 1.6257620584279454e-06,
2774
+ "loss": 0.0881,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.83,
2779
+ "learning_rate": 1.5933294470980443e-06,
2780
+ "loss": 0.0475,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.83,
2785
+ "learning_rate": 1.5611955811889645e-06,
2786
+ "loss": 0.0473,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.84,
2791
+ "learning_rate": 1.5293616026326053e-06,
2792
+ "loss": 0.0143,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.84,
2797
+ "learning_rate": 1.4978286427038602e-06,
2798
+ "loss": 0.1228,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.84,
2803
+ "learning_rate": 1.4665978219804056e-06,
2804
+ "loss": 0.2635,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.84,
2809
+ "learning_rate": 1.435670250302892e-06,
2810
+ "loss": 0.0668,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.84,
2815
+ "learning_rate": 1.405047026735491e-06,
2816
+ "loss": 0.082,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.85,
2821
+ "learning_rate": 1.3747292395268407e-06,
2822
+ "loss": 0.085,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.85,
2827
+ "learning_rate": 1.344717966071385e-06,
2828
+ "loss": 0.1178,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.85,
2833
+ "learning_rate": 1.3150142728710669e-06,
2834
+ "loss": 0.0633,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.85,
2839
+ "learning_rate": 1.2856192154974488e-06,
2840
+ "loss": 0.0229,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.85,
2845
+ "learning_rate": 1.2565338385541792e-06,
2846
+ "loss": 0.0356,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.85,
2851
+ "learning_rate": 1.2277591756398933e-06,
2852
+ "loss": 0.1599,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.86,
2857
+ "learning_rate": 1.1992962493114645e-06,
2858
+ "loss": 0.0168,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.86,
2863
+ "learning_rate": 1.171146071047683e-06,
2864
+ "loss": 0.0626,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.86,
2869
+ "learning_rate": 1.1433096412132838e-06,
2870
+ "loss": 0.1343,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.86,
2875
+ "learning_rate": 1.1157879490234346e-06,
2876
+ "loss": 0.0529,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.86,
2881
+ "learning_rate": 1.088581972508549e-06,
2882
+ "loss": 0.0556,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.86,
2887
+ "learning_rate": 1.0616926784795511e-06,
2888
+ "loss": 0.0903,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.87,
2893
+ "learning_rate": 1.035121022493506e-06,
2894
+ "loss": 0.0993,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.87,
2899
+ "learning_rate": 1.0088679488196695e-06,
2900
+ "loss": 0.0673,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.87,
2905
+ "learning_rate": 9.829343904059342e-07,
2906
+ "loss": 0.018,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.87,
2911
+ "learning_rate": 9.573212688456635e-07,
2912
+ "loss": 0.1005,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.87,
2917
+ "learning_rate": 9.320294943449537e-07,
2918
+ "loss": 0.0859,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.88,
2923
+ "learning_rate": 9.070599656902801e-07,
2924
+ "loss": 0.0361,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.88,
2929
+ "learning_rate": 8.824135702165693e-07,
2930
+ "loss": 0.0256,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.88,
2935
+ "learning_rate": 8.580911837756467e-07,
2936
+ "loss": 0.0652,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.88,
2941
+ "learning_rate": 8.340936707051273e-07,
2942
+ "loss": 0.103,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.88,
2947
+ "learning_rate": 8.10421883797694e-07,
2948
+ "loss": 0.0589,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.88,
2953
+ "learning_rate": 7.87076664270795e-07,
2954
+ "loss": 0.1919,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.89,
2959
+ "learning_rate": 7.6405884173675e-07,
2960
+ "loss": 0.1313,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.89,
2965
+ "learning_rate": 7.413692341732582e-07,
2966
+ "loss": 0.0657,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.89,
2971
+ "learning_rate": 7.190086478943459e-07,
2972
+ "loss": 0.1785,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.89,
2977
+ "learning_rate": 6.969778775217007e-07,
2978
+ "loss": 0.1866,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.89,
2983
+ "learning_rate": 6.752777059564431e-07,
2984
+ "loss": 0.0295,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.9,
2989
+ "learning_rate": 6.539089043512914e-07,
2990
+ "loss": 0.0316,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.9,
2995
+ "learning_rate": 6.328722320831737e-07,
2996
+ "loss": 0.0702,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.9,
3001
+ "learning_rate": 6.121684367262271e-07,
3002
+ "loss": 0.0271,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.9,
3007
+ "learning_rate": 5.917982540252442e-07,
3008
+ "loss": 0.0398,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 0.9,
3013
+ "learning_rate": 5.71762407869515e-07,
3014
+ "loss": 0.2131,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 0.9,
3019
+ "learning_rate": 5.520616102671128e-07,
3020
+ "loss": 0.217,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 0.91,
3025
+ "learning_rate": 5.326965613195867e-07,
3026
+ "loss": 0.0161,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 0.91,
3031
+ "learning_rate": 5.136679491970809e-07,
3032
+ "loss": 0.0338,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 0.91,
3037
+ "learning_rate": 4.949764501138832e-07,
3038
+ "loss": 0.0178,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 0.91,
3043
+ "learning_rate": 4.766227283043912e-07,
3044
+ "loss": 0.0056,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 0.91,
3049
+ "learning_rate": 4.5860743599951186e-07,
3050
+ "loss": 0.1492,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 0.92,
3055
+ "learning_rate": 4.4093121340347824e-07,
3056
+ "loss": 0.1143,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 0.92,
3061
+ "learning_rate": 4.235946886711018e-07,
3062
+ "loss": 0.1318,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 0.92,
3067
+ "learning_rate": 4.0659847788544926e-07,
3068
+ "loss": 0.0485,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 0.92,
3073
+ "learning_rate": 3.899431850359503e-07,
3074
+ "loss": 0.0155,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 0.92,
3079
+ "learning_rate": 3.736294019969311e-07,
3080
+ "loss": 0.0895,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 0.92,
3085
+ "learning_rate": 3.5765770850658244e-07,
3086
+ "loss": 0.0913,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 0.93,
3091
+ "learning_rate": 3.420286721463562e-07,
3092
+ "loss": 0.0394,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 0.93,
3097
+ "learning_rate": 3.2674284832080127e-07,
3098
+ "loss": 0.0125,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 0.93,
3103
+ "learning_rate": 3.118007802378198e-07,
3104
+ "loss": 0.082,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 0.93,
3109
+ "learning_rate": 2.972029988893621e-07,
3110
+ "loss": 0.2907,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 0.93,
3115
+ "learning_rate": 2.8295002303256546e-07,
3116
+ "loss": 0.0428,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 0.94,
3121
+ "learning_rate": 2.6904235917131094e-07,
3122
+ "loss": 0.1136,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 0.94,
3127
+ "learning_rate": 2.554805015382289e-07,
3128
+ "loss": 0.2987,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 0.94,
3133
+ "learning_rate": 2.422649320771331e-07,
3134
+ "loss": 0.1616,
3135
+ "step": 521
3136
+ },
3137
+ {
3138
+ "epoch": 0.94,
3139
+ "learning_rate": 2.293961204258932e-07,
3140
+ "loss": 0.1623,
3141
+ "step": 522
3142
+ },
3143
+ {
3144
+ "epoch": 0.94,
3145
+ "learning_rate": 2.1687452389974829e-07,
3146
+ "loss": 0.0428,
3147
+ "step": 523
3148
+ },
3149
+ {
3150
+ "epoch": 0.94,
3151
+ "learning_rate": 2.0470058747505516e-07,
3152
+ "loss": 0.0309,
3153
+ "step": 524
3154
+ },
3155
+ {
3156
+ "epoch": 0.95,
3157
+ "learning_rate": 1.9287474377347238e-07,
3158
+ "loss": 0.0533,
3159
+ "step": 525
3160
+ },
3161
+ {
3162
+ "epoch": 0.95,
3163
+ "learning_rate": 1.8139741304658566e-07,
3164
+ "loss": 0.0565,
3165
+ "step": 526
3166
+ },
3167
+ {
3168
+ "epoch": 0.95,
3169
+ "learning_rate": 1.7026900316098217e-07,
3170
+ "loss": 0.0545,
3171
+ "step": 527
3172
+ },
3173
+ {
3174
+ "epoch": 0.95,
3175
+ "learning_rate": 1.5948990958374543e-07,
3176
+ "loss": 0.1014,
3177
+ "step": 528
3178
+ },
3179
+ {
3180
+ "epoch": 0.95,
3181
+ "learning_rate": 1.490605153684066e-07,
3182
+ "loss": 0.2859,
3183
+ "step": 529
3184
+ },
3185
+ {
3186
+ "epoch": 0.95,
3187
+ "learning_rate": 1.3898119114133192e-07,
3188
+ "loss": 0.2631,
3189
+ "step": 530
3190
+ },
3191
+ {
3192
+ "epoch": 0.96,
3193
+ "learning_rate": 1.292522950885533e-07,
3194
+ "loss": 0.1341,
3195
+ "step": 531
3196
+ },
3197
+ {
3198
+ "epoch": 0.96,
3199
+ "learning_rate": 1.1987417294303748e-07,
3200
+ "loss": 0.1001,
3201
+ "step": 532
3202
+ },
3203
+ {
3204
+ "epoch": 0.96,
3205
+ "learning_rate": 1.1084715797239798e-07,
3206
+ "loss": 0.2334,
3207
+ "step": 533
3208
+ },
3209
+ {
3210
+ "epoch": 0.96,
3211
+ "learning_rate": 1.0217157096705676e-07,
3212
+ "loss": 0.0793,
3213
+ "step": 534
3214
+ },
3215
+ {
3216
+ "epoch": 0.96,
3217
+ "learning_rate": 9.384772022884015e-08,
3218
+ "loss": 0.0426,
3219
+ "step": 535
3220
+ },
3221
+ {
3222
+ "epoch": 0.97,
3223
+ "learning_rate": 8.587590156002635e-08,
3224
+ "loss": 0.0174,
3225
+ "step": 536
3226
+ },
3227
+ {
3228
+ "epoch": 0.97,
3229
+ "learning_rate": 7.825639825282949e-08,
3230
+ "loss": 0.1224,
3231
+ "step": 537
3232
+ },
3233
+ {
3234
+ "epoch": 0.97,
3235
+ "learning_rate": 7.098948107933656e-08,
3236
+ "loss": 0.0296,
3237
+ "step": 538
3238
+ },
3239
+ {
3240
+ "epoch": 0.97,
3241
+ "learning_rate": 6.407540828188175e-08,
3242
+ "loss": 0.0831,
3243
+ "step": 539
3244
+ },
3245
+ {
3246
+ "epoch": 0.97,
3247
+ "learning_rate": 5.7514425563870436e-08,
3248
+ "loss": 0.0264,
3249
+ "step": 540
3250
+ },
3251
+ {
3252
+ "epoch": 0.97,
3253
+ "learning_rate": 5.1306766081048456e-08,
3254
+ "loss": 0.0982,
3255
+ "step": 541
3256
+ },
3257
+ {
3258
+ "epoch": 0.98,
3259
+ "learning_rate": 4.545265043321645e-08,
3260
+ "loss": 0.0393,
3261
+ "step": 542
3262
+ },
3263
+ {
3264
+ "epoch": 0.98,
3265
+ "learning_rate": 3.9952286656389506e-08,
3266
+ "loss": 0.0695,
3267
+ "step": 543
3268
+ },
3269
+ {
3270
+ "epoch": 0.98,
3271
+ "learning_rate": 3.480587021540527e-08,
3272
+ "loss": 0.1458,
3273
+ "step": 544
3274
+ },
3275
+ {
3276
+ "epoch": 0.98,
3277
+ "learning_rate": 3.001358399697618e-08,
3278
+ "loss": 0.0065,
3279
+ "step": 545
3280
+ },
3281
+ {
3282
+ "epoch": 0.98,
3283
+ "learning_rate": 2.557559830319245e-08,
3284
+ "loss": 0.1492,
3285
+ "step": 546
3286
+ },
3287
+ {
3288
+ "epoch": 0.99,
3289
+ "learning_rate": 2.1492070845468005e-08,
3290
+ "loss": 0.094,
3291
+ "step": 547
3292
+ },
3293
+ {
3294
+ "epoch": 0.99,
3295
+ "learning_rate": 1.7763146738938307e-08,
3296
+ "loss": 0.2497,
3297
+ "step": 548
3298
+ },
3299
+ {
3300
+ "epoch": 0.99,
3301
+ "learning_rate": 1.4388958497300043e-08,
3302
+ "loss": 0.0833,
3303
+ "step": 549
3304
+ },
3305
+ {
3306
+ "epoch": 0.99,
3307
+ "learning_rate": 1.1369626028104874e-08,
3308
+ "loss": 0.0528,
3309
+ "step": 550
3310
+ },
3311
+ {
3312
+ "epoch": 0.99,
3313
+ "learning_rate": 8.705256628499525e-09,
3314
+ "loss": 0.0411,
3315
+ "step": 551
3316
+ },
3317
+ {
3318
+ "epoch": 0.99,
3319
+ "learning_rate": 6.39594498140883e-09,
3320
+ "loss": 0.0253,
3321
+ "step": 552
3322
+ },
3323
+ {
3324
+ "epoch": 1.0,
3325
+ "learning_rate": 4.4417731521717576e-09,
3326
+ "loss": 0.2015,
3327
+ "step": 553
3328
+ },
3329
+ {
3330
+ "epoch": 1.0,
3331
+ "learning_rate": 2.842810585627076e-09,
3332
+ "loss": 0.0077,
3333
+ "step": 554
3334
+ },
3335
+ {
3336
+ "epoch": 1.0,
3337
+ "learning_rate": 1.5991141036475478e-09,
3338
+ "loss": 0.1521,
3339
+ "step": 555
3340
+ },
3341
+ {
3342
+ "epoch": 1.0,
3343
+ "step": 555,
3344
+ "total_flos": 1196575985664.0,
3345
+ "train_loss": 0.11872713004180172,
3346
+ "train_runtime": 4113.0695,
3347
+ "train_samples_per_second": 1.347,
3348
+ "train_steps_per_second": 0.135
3349
+ }
3350
+ ],
3351
+ "logging_steps": 1.0,
3352
+ "max_steps": 555,
3353
+ "num_input_tokens_seen": 0,
3354
+ "num_train_epochs": 1,
3355
+ "save_steps": 500,
3356
+ "total_flos": 1196575985664.0,
3357
+ "train_batch_size": 10,
3358
+ "trial_name": null,
3359
+ "trial_params": null
3360
+ }
CheckGuard Models/wholeimage/bank_no/finetune_lora_llava_mistral.sh ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # Use first parameter as GPU IDs, default to "0,1,2,3" if not provided
3
+ GPU_IDS=${1:-0,1,2,3}
4
+
5
+
6
+ CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29602\
7
+ llava/train/train_mem.py \
8
+ --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
9
+ --deepspeed ./scripts/zero3.json \
10
+ --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
11
+ --version mistral_instruct \
12
+ --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/bank_no/bank_no_dataset.json \
13
+ --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
14
+ --vision_tower openai/clip-vit-large-patch14-336 \
15
+ --mm_projector_type mlp2x_gelu \
16
+ --mm_vision_select_layer -2 \
17
+ --mm_use_im_start_end False \
18
+ --mm_use_im_patch_token False \
19
+ --mm_patch_merge_type spatial_unpad \
20
+ --image_aspect_ratio anyres \
21
+ --group_by_modality_length False \
22
+ --bf16 False \
23
+ --fp16 True \
24
+ --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model \
25
+ --num_train_epochs 1 \
26
+ --per_device_train_batch_size 10 \
27
+ --per_device_eval_batch_size 1 \
28
+ --gradient_accumulation_steps 1 \
29
+ --evaluation_strategy "no" \
30
+ --save_strategy "steps" \
31
+ --save_steps 500 \
32
+ --save_total_limit 5 \
33
+ --learning_rate 2e-5 \
34
+ --weight_decay 0. \
35
+ --warmup_ratio 0.05 \
36
+ --lr_scheduler_type "cosine" \
37
+ --logging_steps 1 \
38
+ --tf32 True \
39
+ --model_max_length 4096 \
40
+ --gradient_checkpointing True \
41
+ --dataloader_num_workers 4 \
42
+ --lazy_preprocess True \
43
+ --report_to wandb \
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.6-mistral-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj",
25
+ "up_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "gate_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eea7f9e47bb7d2f074c81e49ccf9648c1394c7fbb7e851b9ac64e47efa2c03b
3
+ size 708924928
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: liuhaotian/llava-v1.6-mistral-7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj",
25
+ "up_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "gate_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:645c293e131efb974f8c218e7d69c93bf50c753554c806d1cf561baa77311585
3
+ size 1417762896
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3183212032ce3f53bf011c0ea2d72e73d90e4ae83d758f3cb2661945c405d2e
3
+ size 632242
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67835d032628ab68661627ea5db2a21c8defdf7306ff43ec6d2d034f2a3add64
3
+ size 4504787266
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step500
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1691c008dc15394c290eec92c6d96f1d3cc3096220a9fdad0f2210c4f3699fd5
3
+ size 14244
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b37e2b05185c6152f2a40fb75a789b697d3a87176492c5cbb481ba82522c2163
3
+ size 1064
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 4096,
37
+ "pad_token": "<unk>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,3021 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9242144177449169,
5
+ "eval_steps": 500,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 7.142857142857143e-07,
14
+ "loss": 0.6789,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 1.4285714285714286e-06,
20
+ "loss": 0.8481,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 2.1428571428571427e-06,
26
+ "loss": 0.663,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 2.8571428571428573e-06,
32
+ "loss": 0.679,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 3.5714285714285718e-06,
38
+ "loss": 1.0166,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.2857142857142855e-06,
44
+ "loss": 0.4693,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 5e-06,
50
+ "loss": 0.4891,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 5.7142857142857145e-06,
56
+ "loss": 0.5523,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 6.4285714285714295e-06,
62
+ "loss": 0.2909,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 7.1428571428571436e-06,
68
+ "loss": 0.2598,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 7.857142857142858e-06,
74
+ "loss": 0.2532,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 7.857142857142858e-06,
80
+ "loss": 0.4867,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 8.571428571428571e-06,
86
+ "loss": 0.4145,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 8.571428571428571e-06,
92
+ "loss": 0.3161,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 9.285714285714288e-06,
98
+ "loss": 0.1836,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 1e-05,
104
+ "loss": 0.3355,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.0714285714285714e-05,
110
+ "loss": 0.2286,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.1428571428571429e-05,
116
+ "loss": 0.3594,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 1.2142857142857142e-05,
122
+ "loss": 0.2981,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 1.2857142857142859e-05,
128
+ "loss": 0.3021,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 1.3571428571428574e-05,
134
+ "loss": 0.3866,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 1.4285714285714287e-05,
140
+ "loss": 0.2409,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 1.5000000000000002e-05,
146
+ "loss": 0.1397,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 1.5714285714285715e-05,
152
+ "loss": 0.1416,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.05,
157
+ "learning_rate": 1.642857142857143e-05,
158
+ "loss": 0.1838,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 1.7142857142857142e-05,
164
+ "loss": 0.1505,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 1.785714285714286e-05,
170
+ "loss": 0.3278,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 1.8571428571428575e-05,
176
+ "loss": 0.2567,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 1.928571428571429e-05,
182
+ "loss": 0.1218,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.06,
187
+ "learning_rate": 2e-05,
188
+ "loss": 0.2288,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.06,
193
+ "learning_rate": 1.9999812486015525e-05,
194
+ "loss": 0.1348,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 1.9999249951094388e-05,
200
+ "loss": 0.3734,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 1.999831241633323e-05,
206
+ "loss": 0.3169,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 1.9996999916892222e-05,
212
+ "loss": 0.1066,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 1.9995312501993765e-05,
218
+ "loss": 0.4434,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.07,
223
+ "learning_rate": 1.9993250234920638e-05,
224
+ "loss": 0.198,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 1.9990813193013625e-05,
230
+ "loss": 0.115,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 1.9988001467668613e-05,
236
+ "loss": 0.2676,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 1.9984815164333163e-05,
242
+ "loss": 0.2201,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 1.9981254402502568e-05,
248
+ "loss": 0.1945,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.08,
253
+ "learning_rate": 1.997731931571535e-05,
254
+ "loss": 0.1391,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "learning_rate": 1.9973010051548274e-05,
260
+ "loss": 0.2697,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 1.9968326771610797e-05,
266
+ "loss": 0.1562,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 1.9963269651539018e-05,
272
+ "loss": 0.2204,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 1.9957838880989076e-05,
278
+ "loss": 0.2729,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.09,
283
+ "learning_rate": 1.9952034663630064e-05,
284
+ "loss": 0.441,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.09,
289
+ "learning_rate": 1.9952034663630064e-05,
290
+ "loss": 0.1401,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 1.9945857217136365e-05,
296
+ "loss": 0.3727,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 1.9939306773179498e-05,
302
+ "loss": 0.3269,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 1.9932383577419432e-05,
308
+ "loss": 0.0801,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 1.9925087889495374e-05,
314
+ "loss": 0.2772,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.1,
319
+ "learning_rate": 1.9917419983016025e-05,
320
+ "loss": 0.2253,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.1,
325
+ "learning_rate": 1.9909380145549325e-05,
326
+ "loss": 0.2318,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 1.9900968678611664e-05,
332
+ "loss": 0.1809,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 1.989218589765658e-05,
338
+ "loss": 0.1155,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 1.9883032132062926e-05,
344
+ "loss": 0.2356,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.11,
349
+ "learning_rate": 1.9873507725122505e-05,
350
+ "loss": 0.1194,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.11,
355
+ "learning_rate": 1.9863613034027224e-05,
356
+ "loss": 0.3272,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.11,
361
+ "learning_rate": 1.985334842985567e-05,
362
+ "loss": 0.183,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 1.9842714297559212e-05,
368
+ "loss": 0.1217,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 1.9831711035947552e-05,
374
+ "loss": 0.1388,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 1.9820339057673773e-05,
380
+ "loss": 0.2112,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.12,
385
+ "learning_rate": 1.9808598789218866e-05,
386
+ "loss": 0.0917,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.12,
391
+ "learning_rate": 1.979649067087574e-05,
392
+ "loss": 0.1585,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 1.9784015156732693e-05,
398
+ "loss": 0.1446,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 1.97711727146564e-05,
404
+ "loss": 0.3511,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 1.9757963826274357e-05,
410
+ "loss": 0.1019,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.13,
415
+ "learning_rate": 1.9744388986956824e-05,
416
+ "loss": 0.1165,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.13,
421
+ "learning_rate": 1.973044870579824e-05,
422
+ "loss": 0.2189,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.13,
427
+ "learning_rate": 1.971614350559814e-05,
428
+ "loss": 0.1254,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 1.970147392284154e-05,
434
+ "loss": 0.0627,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 1.9686440507678827e-05,
440
+ "loss": 0.0952,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 1.967104382390511e-05,
446
+ "loss": 0.1867,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.14,
451
+ "learning_rate": 1.9655284448939094e-05,
452
+ "loss": 0.2003,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.14,
457
+ "learning_rate": 1.9639162973801426e-05,
458
+ "loss": 0.1188,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.14,
463
+ "learning_rate": 1.9622680003092503e-05,
464
+ "loss": 0.1111,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 1.960583615496984e-05,
470
+ "loss": 0.1203,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 1.9588632061124837e-05,
476
+ "loss": 0.1599,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.15,
481
+ "learning_rate": 1.9571068366759143e-05,
482
+ "loss": 0.209,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.15,
487
+ "learning_rate": 1.9553145730560415e-05,
488
+ "loss": 0.2183,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.15,
493
+ "learning_rate": 1.953486482467764e-05,
494
+ "loss": 0.1351,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 1.951622633469592e-05,
500
+ "loss": 0.128,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 1.9497230959610757e-05,
506
+ "loss": 0.2241,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.16,
511
+ "learning_rate": 1.9477879411801843e-05,
512
+ "loss": 0.0991,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.16,
517
+ "learning_rate": 1.9458172417006347e-05,
518
+ "loss": 0.1165,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.16,
523
+ "learning_rate": 1.9438110714291697e-05,
524
+ "loss": 0.0792,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.16,
529
+ "learning_rate": 1.9417695056027847e-05,
530
+ "loss": 0.121,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 1.9396926207859085e-05,
536
+ "loss": 0.2727,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 1.9375804948675308e-05,
542
+ "loss": 0.1947,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.17,
547
+ "learning_rate": 1.935433207058281e-05,
548
+ "loss": 0.2155,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.17,
553
+ "learning_rate": 1.933250837887457e-05,
554
+ "loss": 0.0525,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.17,
559
+ "learning_rate": 1.9310334692000077e-05,
560
+ "loss": 0.2401,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.17,
565
+ "learning_rate": 1.9287811841534598e-05,
566
+ "loss": 0.0743,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 1.9264940672148018e-05,
572
+ "loss": 0.1659,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.18,
577
+ "learning_rate": 1.9241722041573166e-05,
578
+ "loss": 0.1184,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.18,
583
+ "learning_rate": 1.9218156820573618e-05,
584
+ "loss": 0.1207,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.18,
589
+ "learning_rate": 1.9194245892911077e-05,
590
+ "loss": 0.1292,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.18,
595
+ "learning_rate": 1.916999015531221e-05,
596
+ "loss": 0.2059,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 1.9145390517435013e-05,
602
+ "loss": 0.1682,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 1.9120447901834708e-05,
608
+ "loss": 0.1403,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.19,
613
+ "learning_rate": 1.9095163243929143e-05,
614
+ "loss": 0.1752,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.19,
619
+ "learning_rate": 1.906953749196371e-05,
620
+ "loss": 0.1616,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.19,
625
+ "learning_rate": 1.9043571606975776e-05,
626
+ "loss": 0.1127,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.19,
631
+ "learning_rate": 1.901726656275866e-05,
632
+ "loss": 0.2236,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 1.8990623345825084e-05,
638
+ "loss": 0.2308,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.2,
643
+ "learning_rate": 1.8963642955370203e-05,
644
+ "loss": 0.1739,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.2,
649
+ "learning_rate": 1.8936326403234125e-05,
650
+ "loss": 0.1762,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.2,
655
+ "learning_rate": 1.890867471386395e-05,
656
+ "loss": 0.1457,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.2,
661
+ "learning_rate": 1.888068892427538e-05,
662
+ "loss": 0.2768,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 1.8852370084013783e-05,
668
+ "loss": 0.1389,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.21,
673
+ "learning_rate": 1.882371925511488e-05,
674
+ "loss": 0.2747,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.21,
679
+ "learning_rate": 1.879473751206489e-05,
680
+ "loss": 0.0542,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.21,
685
+ "learning_rate": 1.8765425941760237e-05,
686
+ "loss": 0.1414,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.21,
691
+ "learning_rate": 1.8735785643466786e-05,
692
+ "loss": 0.2482,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.21,
697
+ "learning_rate": 1.8705817728778626e-05,
698
+ "loss": 0.1602,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 1.867552332157637e-05,
704
+ "loss": 0.1342,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.22,
709
+ "learning_rate": 1.8644903557985027e-05,
710
+ "loss": 0.077,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.22,
715
+ "learning_rate": 1.8613959586331364e-05,
716
+ "loss": 0.0818,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.22,
721
+ "learning_rate": 1.8582692567100866e-05,
722
+ "loss": 0.1443,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.22,
727
+ "learning_rate": 1.855110367289421e-05,
728
+ "loss": 0.1148,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.22,
733
+ "learning_rate": 1.851919408838327e-05,
734
+ "loss": 0.1661,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.23,
739
+ "learning_rate": 1.8486965010266726e-05,
740
+ "loss": 0.1676,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.23,
745
+ "learning_rate": 1.845441764722514e-05,
746
+ "loss": 0.1288,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.23,
751
+ "learning_rate": 1.842155321987566e-05,
752
+ "loss": 0.0725,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.23,
757
+ "learning_rate": 1.8388372960726228e-05,
758
+ "loss": 0.1258,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.23,
763
+ "learning_rate": 1.8354878114129368e-05,
764
+ "loss": 0.068,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 1.8321069936235503e-05,
770
+ "loss": 0.1698,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.24,
775
+ "learning_rate": 1.8286949694945864e-05,
776
+ "loss": 0.2038,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.24,
781
+ "learning_rate": 1.8252518669864935e-05,
782
+ "loss": 0.0274,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.24,
787
+ "learning_rate": 1.821777815225245e-05,
788
+ "loss": 0.0564,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.24,
793
+ "learning_rate": 1.8182729444974993e-05,
794
+ "loss": 0.1182,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.24,
799
+ "learning_rate": 1.8147373862457107e-05,
800
+ "loss": 0.3175,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.25,
805
+ "learning_rate": 1.8111712730632024e-05,
806
+ "loss": 0.1017,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.25,
811
+ "learning_rate": 1.807574738689193e-05,
812
+ "loss": 0.3348,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.25,
817
+ "learning_rate": 1.8039479180037803e-05,
818
+ "loss": 0.3129,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.25,
823
+ "learning_rate": 1.800290947022884e-05,
824
+ "loss": 0.1095,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.25,
829
+ "learning_rate": 1.7966039628931447e-05,
830
+ "loss": 0.1922,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.26,
835
+ "learning_rate": 1.7928871038867785e-05,
836
+ "loss": 0.1022,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.26,
841
+ "learning_rate": 1.789140509396394e-05,
842
+ "loss": 0.2318,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.26,
847
+ "learning_rate": 1.7853643199297632e-05,
848
+ "loss": 0.2374,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.26,
853
+ "learning_rate": 1.7815586771045535e-05,
854
+ "loss": 0.1194,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.26,
859
+ "learning_rate": 1.777723723643014e-05,
860
+ "loss": 0.1914,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.26,
865
+ "learning_rate": 1.773859603366626e-05,
866
+ "loss": 0.0431,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.27,
871
+ "learning_rate": 1.769966461190707e-05,
872
+ "loss": 0.081,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.27,
877
+ "learning_rate": 1.766044443118978e-05,
878
+ "loss": 0.2162,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.27,
883
+ "learning_rate": 1.762093696238086e-05,
884
+ "loss": 0.1151,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.27,
889
+ "learning_rate": 1.7581143687120877e-05,
890
+ "loss": 0.184,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.27,
895
+ "learning_rate": 1.7541066097768965e-05,
896
+ "loss": 0.1963,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.28,
901
+ "learning_rate": 1.750070569734681e-05,
902
+ "loss": 0.1318,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.28,
907
+ "learning_rate": 1.7460063999482314e-05,
908
+ "loss": 0.1163,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.28,
913
+ "learning_rate": 1.7419142528352815e-05,
914
+ "loss": 0.1013,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.28,
919
+ "learning_rate": 1.737794281862794e-05,
920
+ "loss": 0.0957,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.28,
925
+ "learning_rate": 1.7336466415412028e-05,
926
+ "loss": 0.2023,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.28,
931
+ "learning_rate": 1.729471487418621e-05,
932
+ "loss": 0.1398,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.29,
937
+ "learning_rate": 1.7252689760750053e-05,
938
+ "loss": 0.1238,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.29,
943
+ "learning_rate": 1.721039265116285e-05,
944
+ "loss": 0.2201,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.29,
949
+ "learning_rate": 1.7167825131684516e-05,
950
+ "loss": 0.0698,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.29,
955
+ "learning_rate": 1.7124988798716084e-05,
956
+ "loss": 0.0312,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.29,
961
+ "learning_rate": 1.7081885258739846e-05,
962
+ "loss": 0.1443,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.3,
967
+ "learning_rate": 1.7038516128259118e-05,
968
+ "loss": 0.1349,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.3,
973
+ "learning_rate": 1.6994883033737582e-05,
974
+ "loss": 0.0751,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.3,
979
+ "learning_rate": 1.695098761153832e-05,
980
+ "loss": 0.0543,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.3,
985
+ "learning_rate": 1.6906831507862446e-05,
986
+ "loss": 0.0533,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.3,
991
+ "learning_rate": 1.686241637868734e-05,
992
+ "loss": 0.1328,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.3,
997
+ "learning_rate": 1.6817743889704564e-05,
998
+ "loss": 0.3057,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.31,
1003
+ "learning_rate": 1.6772815716257414e-05,
1004
+ "loss": 0.1642,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.31,
1009
+ "learning_rate": 1.672763354327804e-05,
1010
+ "loss": 0.1479,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.31,
1015
+ "learning_rate": 1.6682199065224307e-05,
1016
+ "loss": 0.1163,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.31,
1021
+ "learning_rate": 1.6636513986016215e-05,
1022
+ "loss": 0.0395,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.31,
1027
+ "learning_rate": 1.6590580018972012e-05,
1028
+ "loss": 0.0456,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.32,
1033
+ "learning_rate": 1.6544398886743934e-05,
1034
+ "loss": 0.2018,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.32,
1039
+ "learning_rate": 1.64979723212536e-05,
1040
+ "loss": 0.1655,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.32,
1045
+ "learning_rate": 1.6451302063627067e-05,
1046
+ "loss": 0.1805,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.32,
1051
+ "learning_rate": 1.6404389864129533e-05,
1052
+ "loss": 0.2445,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.32,
1057
+ "learning_rate": 1.6357237482099682e-05,
1058
+ "loss": 0.134,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.33,
1063
+ "learning_rate": 1.6309846685883726e-05,
1064
+ "loss": 0.0976,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.33,
1069
+ "learning_rate": 1.6262219252769065e-05,
1070
+ "loss": 0.0984,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.33,
1075
+ "learning_rate": 1.621435696891765e-05,
1076
+ "loss": 0.0495,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.33,
1081
+ "learning_rate": 1.6166261629298996e-05,
1082
+ "loss": 0.1005,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.33,
1087
+ "learning_rate": 1.6117935037622848e-05,
1088
+ "loss": 0.1399,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.33,
1093
+ "learning_rate": 1.606937900627157e-05,
1094
+ "loss": 0.2105,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.34,
1099
+ "learning_rate": 1.6020595356232137e-05,
1100
+ "loss": 0.142,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.34,
1105
+ "learning_rate": 1.5971585917027864e-05,
1106
+ "loss": 0.0791,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.34,
1111
+ "learning_rate": 1.5922352526649803e-05,
1112
+ "loss": 0.2,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.34,
1117
+ "learning_rate": 1.587289703148779e-05,
1118
+ "loss": 0.1317,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.34,
1123
+ "learning_rate": 1.5823221286261217e-05,
1124
+ "loss": 0.1656,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.35,
1129
+ "learning_rate": 1.5773327153949465e-05,
1130
+ "loss": 0.3358,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.35,
1135
+ "learning_rate": 1.572321650572205e-05,
1136
+ "loss": 0.2216,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.35,
1141
+ "learning_rate": 1.567289122086843e-05,
1142
+ "loss": 0.0937,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.35,
1147
+ "learning_rate": 1.5622353186727542e-05,
1148
+ "loss": 0.0995,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.35,
1153
+ "learning_rate": 1.557160429861702e-05,
1154
+ "loss": 0.2324,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.35,
1159
+ "learning_rate": 1.5520646459762102e-05,
1160
+ "loss": 0.2847,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.36,
1165
+ "learning_rate": 1.5469481581224274e-05,
1166
+ "loss": 0.1242,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.36,
1171
+ "learning_rate": 1.5418111581829575e-05,
1172
+ "loss": 0.1771,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.36,
1177
+ "learning_rate": 1.536653838809667e-05,
1178
+ "loss": 0.2115,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.36,
1183
+ "learning_rate": 1.531476393416456e-05,
1184
+ "loss": 0.074,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.36,
1189
+ "learning_rate": 1.5262790161720082e-05,
1190
+ "loss": 0.0893,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.37,
1195
+ "learning_rate": 1.5210619019925066e-05,
1196
+ "loss": 0.0644,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.37,
1201
+ "learning_rate": 1.5158252465343242e-05,
1202
+ "loss": 0.2146,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.37,
1207
+ "learning_rate": 1.5105692461866874e-05,
1208
+ "loss": 0.2579,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.37,
1213
+ "learning_rate": 1.50529409806431e-05,
1214
+ "loss": 0.0806,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.37,
1219
+ "learning_rate": 1.5000000000000002e-05,
1220
+ "loss": 0.0806,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.38,
1225
+ "learning_rate": 1.4946871505372426e-05,
1226
+ "loss": 0.132,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.38,
1231
+ "learning_rate": 1.4893557489227518e-05,
1232
+ "loss": 0.1438,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.38,
1237
+ "learning_rate": 1.4840059950989992e-05,
1238
+ "loss": 0.1703,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.38,
1243
+ "learning_rate": 1.478638089696716e-05,
1244
+ "loss": 0.0903,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.38,
1249
+ "learning_rate": 1.4732522340273686e-05,
1250
+ "loss": 0.1515,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.38,
1255
+ "learning_rate": 1.467848630075608e-05,
1256
+ "loss": 0.2156,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.39,
1261
+ "learning_rate": 1.4624274804916958e-05,
1262
+ "loss": 0.0783,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.39,
1267
+ "learning_rate": 1.456988988583904e-05,
1268
+ "loss": 0.1432,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.39,
1273
+ "learning_rate": 1.4515333583108896e-05,
1274
+ "loss": 0.1716,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.39,
1279
+ "learning_rate": 1.4460607942740468e-05,
1280
+ "loss": 0.2328,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.39,
1285
+ "learning_rate": 1.4405715017098333e-05,
1286
+ "loss": 0.1317,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.4,
1291
+ "learning_rate": 1.4350656864820733e-05,
1292
+ "loss": 0.097,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.4,
1297
+ "learning_rate": 1.4295435550742372e-05,
1298
+ "loss": 0.1547,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.4,
1303
+ "learning_rate": 1.4240053145816968e-05,
1304
+ "loss": 0.0737,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.4,
1309
+ "learning_rate": 1.4184511727039612e-05,
1310
+ "loss": 0.0926,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.4,
1315
+ "learning_rate": 1.4128813377368851e-05,
1316
+ "loss": 0.0824,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.4,
1321
+ "learning_rate": 1.4072960185648576e-05,
1322
+ "loss": 0.1236,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.41,
1327
+ "learning_rate": 1.4016954246529697e-05,
1328
+ "loss": 0.157,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.41,
1333
+ "learning_rate": 1.396079766039157e-05,
1334
+ "loss": 0.1241,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.41,
1339
+ "learning_rate": 1.3904492533263243e-05,
1340
+ "loss": 0.1243,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.41,
1345
+ "learning_rate": 1.3848040976744459e-05,
1346
+ "loss": 0.1429,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.41,
1351
+ "learning_rate": 1.3791445107926478e-05,
1352
+ "loss": 0.0321,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.42,
1357
+ "learning_rate": 1.3734707049312674e-05,
1358
+ "loss": 0.0398,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.42,
1363
+ "learning_rate": 1.3677828928738934e-05,
1364
+ "loss": 0.2625,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.42,
1369
+ "learning_rate": 1.3620812879293864e-05,
1370
+ "loss": 0.0926,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.42,
1375
+ "learning_rate": 1.3563661039238785e-05,
1376
+ "loss": 0.06,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.42,
1381
+ "learning_rate": 1.3506375551927546e-05,
1382
+ "loss": 0.2397,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.43,
1387
+ "learning_rate": 1.3448958565726144e-05,
1388
+ "loss": 0.157,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.43,
1393
+ "learning_rate": 1.3391412233932148e-05,
1394
+ "loss": 0.1105,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.43,
1399
+ "learning_rate": 1.3333738714693958e-05,
1400
+ "loss": 0.0877,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.43,
1405
+ "learning_rate": 1.3275940170929845e-05,
1406
+ "loss": 0.1821,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.43,
1411
+ "learning_rate": 1.3218018770246858e-05,
1412
+ "loss": 0.0166,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.43,
1417
+ "learning_rate": 1.3159976684859528e-05,
1418
+ "loss": 0.118,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.44,
1423
+ "learning_rate": 1.3101816091508389e-05,
1424
+ "loss": 0.2289,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.44,
1429
+ "learning_rate": 1.3043539171378362e-05,
1430
+ "loss": 0.0518,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.44,
1435
+ "learning_rate": 1.2985148110016947e-05,
1436
+ "loss": 0.1012,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.44,
1441
+ "learning_rate": 1.292664509725226e-05,
1442
+ "loss": 0.2009,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.44,
1447
+ "learning_rate": 1.2868032327110904e-05,
1448
+ "loss": 0.252,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.45,
1453
+ "learning_rate": 1.2809311997735697e-05,
1454
+ "loss": 0.2044,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.45,
1459
+ "learning_rate": 1.2750486311303218e-05,
1460
+ "loss": 0.1908,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.45,
1465
+ "learning_rate": 1.2691557473941246e-05,
1466
+ "loss": 0.3064,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.45,
1471
+ "learning_rate": 1.2632527695645993e-05,
1472
+ "loss": 0.091,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.45,
1477
+ "learning_rate": 1.257339919019925e-05,
1478
+ "loss": 0.0606,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.45,
1483
+ "learning_rate": 1.2514174175085346e-05,
1484
+ "loss": 0.147,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.46,
1489
+ "learning_rate": 1.2454854871407993e-05,
1490
+ "loss": 0.2029,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.46,
1495
+ "learning_rate": 1.239544350380699e-05,
1496
+ "loss": 0.0851,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.46,
1501
+ "learning_rate": 1.2335942300374788e-05,
1502
+ "loss": 0.0904,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.46,
1507
+ "learning_rate": 1.2276353492572937e-05,
1508
+ "loss": 0.0721,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.46,
1513
+ "learning_rate": 1.2216679315148388e-05,
1514
+ "loss": 0.1488,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.47,
1519
+ "learning_rate": 1.2156922006049703e-05,
1520
+ "loss": 0.1927,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.47,
1525
+ "learning_rate": 1.2097083806343104e-05,
1526
+ "loss": 0.029,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.47,
1531
+ "learning_rate": 1.2037166960128443e-05,
1532
+ "loss": 0.0301,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.47,
1537
+ "learning_rate": 1.1977173714455034e-05,
1538
+ "loss": 0.1231,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.47,
1543
+ "learning_rate": 1.1917106319237386e-05,
1544
+ "loss": 0.0348,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.48,
1549
+ "learning_rate": 1.1856967027170818e-05,
1550
+ "loss": 0.0869,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.48,
1555
+ "learning_rate": 1.1796758093646989e-05,
1556
+ "loss": 0.1164,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.48,
1561
+ "learning_rate": 1.1736481776669307e-05,
1562
+ "loss": 0.0388,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.48,
1567
+ "learning_rate": 1.1676140336768236e-05,
1568
+ "loss": 0.0433,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.48,
1573
+ "learning_rate": 1.161573603691655e-05,
1574
+ "loss": 0.1996,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.48,
1579
+ "learning_rate": 1.1555271142444433e-05,
1580
+ "loss": 0.2182,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.49,
1585
+ "learning_rate": 1.1494747920954545e-05,
1586
+ "loss": 0.0509,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.49,
1591
+ "learning_rate": 1.1434168642236964e-05,
1592
+ "loss": 0.1078,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.49,
1597
+ "learning_rate": 1.1373535578184083e-05,
1598
+ "loss": 0.0412,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.49,
1603
+ "learning_rate": 1.1312851002705383e-05,
1604
+ "loss": 0.2425,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.49,
1609
+ "learning_rate": 1.1252117191642175e-05,
1610
+ "loss": 0.1119,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.5,
1615
+ "learning_rate": 1.1191336422682237e-05,
1616
+ "loss": 0.0455,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.5,
1621
+ "learning_rate": 1.1130510975274408e-05,
1622
+ "loss": 0.2613,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.5,
1627
+ "learning_rate": 1.1069643130543084e-05,
1628
+ "loss": 0.0651,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.5,
1633
+ "learning_rate": 1.1008735171202685e-05,
1634
+ "loss": 0.1155,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.5,
1639
+ "learning_rate": 1.0947789381472035e-05,
1640
+ "loss": 0.0661,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.5,
1645
+ "learning_rate": 1.0886808046988716e-05,
1646
+ "loss": 0.0881,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.51,
1651
+ "learning_rate": 1.0825793454723325e-05,
1652
+ "loss": 0.1123,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.51,
1657
+ "learning_rate": 1.0764747892893724e-05,
1658
+ "loss": 0.14,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.51,
1663
+ "learning_rate": 1.0703673650879219e-05,
1664
+ "loss": 0.0889,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.51,
1669
+ "learning_rate": 1.0642573019134703e-05,
1670
+ "loss": 0.1333,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.51,
1675
+ "learning_rate": 1.0581448289104759e-05,
1676
+ "loss": 0.0608,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.52,
1681
+ "learning_rate": 1.0520301753137725e-05,
1682
+ "loss": 0.2882,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.52,
1687
+ "learning_rate": 1.045913570439972e-05,
1688
+ "loss": 0.0661,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.52,
1693
+ "learning_rate": 1.0397952436788643e-05,
1694
+ "loss": 0.107,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.52,
1699
+ "learning_rate": 1.0336754244848156e-05,
1700
+ "loss": 0.0499,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.52,
1705
+ "learning_rate": 1.0275543423681622e-05,
1706
+ "loss": 0.237,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.52,
1711
+ "learning_rate": 1.0214322268866033e-05,
1712
+ "loss": 0.0301,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.53,
1717
+ "learning_rate": 1.0153093076365923e-05,
1718
+ "loss": 0.0904,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.53,
1723
+ "learning_rate": 1.0091858142447266e-05,
1724
+ "loss": 0.0165,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.53,
1729
+ "learning_rate": 1.0030619763591348e-05,
1730
+ "loss": 0.0791,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.53,
1735
+ "learning_rate": 9.969380236408656e-06,
1736
+ "loss": 0.1997,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.53,
1741
+ "learning_rate": 9.908141857552737e-06,
1742
+ "loss": 0.0155,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.54,
1747
+ "learning_rate": 9.846906923634079e-06,
1748
+ "loss": 0.0457,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.54,
1753
+ "learning_rate": 9.785677731133972e-06,
1754
+ "loss": 0.0203,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.54,
1759
+ "learning_rate": 9.724456576318383e-06,
1760
+ "loss": 0.2384,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.54,
1765
+ "learning_rate": 9.663245755151847e-06,
1766
+ "loss": 0.1459,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.54,
1771
+ "learning_rate": 9.602047563211359e-06,
1772
+ "loss": 0.2249,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.55,
1777
+ "learning_rate": 9.540864295600282e-06,
1778
+ "loss": 0.037,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.55,
1783
+ "learning_rate": 9.479698246862277e-06,
1784
+ "loss": 0.145,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.55,
1789
+ "learning_rate": 9.418551710895243e-06,
1790
+ "loss": 0.1501,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.55,
1795
+ "learning_rate": 9.3574269808653e-06,
1796
+ "loss": 0.0727,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.55,
1801
+ "learning_rate": 9.296326349120786e-06,
1802
+ "loss": 0.0992,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.55,
1807
+ "learning_rate": 9.23525210710628e-06,
1808
+ "loss": 0.2516,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.56,
1813
+ "learning_rate": 9.174206545276678e-06,
1814
+ "loss": 0.0628,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.56,
1819
+ "learning_rate": 9.113191953011287e-06,
1820
+ "loss": 0.132,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.56,
1825
+ "learning_rate": 9.052210618527966e-06,
1826
+ "loss": 0.0908,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.56,
1831
+ "learning_rate": 8.991264828797319e-06,
1832
+ "loss": 0.1432,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.56,
1837
+ "learning_rate": 8.93035686945692e-06,
1838
+ "loss": 0.0493,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.57,
1843
+ "learning_rate": 8.869489024725595e-06,
1844
+ "loss": 0.0578,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.57,
1849
+ "learning_rate": 8.808663577317765e-06,
1850
+ "loss": 0.0909,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.57,
1855
+ "learning_rate": 8.747882808357828e-06,
1856
+ "loss": 0.0646,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.57,
1861
+ "learning_rate": 8.687148997294622e-06,
1862
+ "loss": 0.1308,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.57,
1867
+ "learning_rate": 8.626464421815919e-06,
1868
+ "loss": 0.0729,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.57,
1873
+ "learning_rate": 8.565831357763039e-06,
1874
+ "loss": 0.1871,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.58,
1879
+ "learning_rate": 8.505252079045459e-06,
1880
+ "loss": 0.1577,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.58,
1885
+ "learning_rate": 8.444728857555572e-06,
1886
+ "loss": 0.1844,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.58,
1891
+ "learning_rate": 8.384263963083453e-06,
1892
+ "loss": 0.1673,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.58,
1897
+ "learning_rate": 8.323859663231768e-06,
1898
+ "loss": 0.1898,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.58,
1903
+ "learning_rate": 8.263518223330698e-06,
1904
+ "loss": 0.1106,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.59,
1909
+ "learning_rate": 8.203241906353014e-06,
1910
+ "loss": 0.0476,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.59,
1915
+ "learning_rate": 8.143032972829184e-06,
1916
+ "loss": 0.1432,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.59,
1921
+ "learning_rate": 8.082893680762619e-06,
1922
+ "loss": 0.0249,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.59,
1927
+ "learning_rate": 8.022826285544967e-06,
1928
+ "loss": 0.0762,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.59,
1933
+ "learning_rate": 7.962833039871562e-06,
1934
+ "loss": 0.1468,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.6,
1939
+ "learning_rate": 7.902916193656898e-06,
1940
+ "loss": 0.0272,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.6,
1945
+ "learning_rate": 7.843077993950302e-06,
1946
+ "loss": 0.0495,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.6,
1951
+ "learning_rate": 7.783320684851613e-06,
1952
+ "loss": 0.1958,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.6,
1957
+ "learning_rate": 7.72364650742707e-06,
1958
+ "loss": 0.0869,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.6,
1963
+ "learning_rate": 7.664057699625215e-06,
1964
+ "loss": 0.2957,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.6,
1969
+ "learning_rate": 7.604556496193015e-06,
1970
+ "loss": 0.0833,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.61,
1975
+ "learning_rate": 7.545145128592009e-06,
1976
+ "loss": 0.0978,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.61,
1981
+ "learning_rate": 7.485825824914658e-06,
1982
+ "loss": 0.1941,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.61,
1987
+ "learning_rate": 7.426600809800753e-06,
1988
+ "loss": 0.0384,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.61,
1993
+ "learning_rate": 7.367472304354011e-06,
1994
+ "loss": 0.0872,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.61,
1999
+ "learning_rate": 7.308442526058757e-06,
2000
+ "loss": 0.1051,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.62,
2005
+ "learning_rate": 7.249513688696786e-06,
2006
+ "loss": 0.0918,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.62,
2011
+ "learning_rate": 7.190688002264308e-06,
2012
+ "loss": 0.2169,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.62,
2017
+ "learning_rate": 7.131967672889101e-06,
2018
+ "loss": 0.1647,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.62,
2023
+ "learning_rate": 7.073354902747742e-06,
2024
+ "loss": 0.0585,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.62,
2029
+ "learning_rate": 7.014851889983058e-06,
2030
+ "loss": 0.1743,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.62,
2035
+ "learning_rate": 6.956460828621641e-06,
2036
+ "loss": 0.3001,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.63,
2041
+ "learning_rate": 6.898183908491617e-06,
2042
+ "loss": 0.0977,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.63,
2047
+ "learning_rate": 6.840023315140476e-06,
2048
+ "loss": 0.0549,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.63,
2053
+ "learning_rate": 6.781981229753145e-06,
2054
+ "loss": 0.0738,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.63,
2059
+ "learning_rate": 6.7240598290701585e-06,
2060
+ "loss": 0.027,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.63,
2065
+ "learning_rate": 6.666261285306048e-06,
2066
+ "loss": 0.0647,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.64,
2071
+ "learning_rate": 6.608587766067853e-06,
2072
+ "loss": 0.0531,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.64,
2077
+ "learning_rate": 6.551041434273862e-06,
2078
+ "loss": 0.0582,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.64,
2083
+ "learning_rate": 6.4936244480724575e-06,
2084
+ "loss": 0.2357,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.64,
2089
+ "learning_rate": 6.4363389607612204e-06,
2090
+ "loss": 0.0614,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.64,
2095
+ "learning_rate": 6.379187120706138e-06,
2096
+ "loss": 0.1516,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.65,
2101
+ "learning_rate": 6.322171071261071e-06,
2102
+ "loss": 0.2906,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.65,
2107
+ "learning_rate": 6.265292950687329e-06,
2108
+ "loss": 0.0402,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.65,
2113
+ "learning_rate": 6.208554892073528e-06,
2114
+ "loss": 0.0895,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.65,
2119
+ "learning_rate": 6.151959023255545e-06,
2120
+ "loss": 0.109,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.65,
2125
+ "learning_rate": 6.095507466736763e-06,
2126
+ "loss": 0.1338,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.65,
2131
+ "learning_rate": 6.039202339608432e-06,
2132
+ "loss": 0.0541,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.66,
2137
+ "learning_rate": 5.983045753470308e-06,
2138
+ "loss": 0.0614,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.66,
2143
+ "learning_rate": 5.927039814351426e-06,
2144
+ "loss": 0.2844,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.66,
2149
+ "learning_rate": 5.871186622631155e-06,
2150
+ "loss": 0.1412,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.66,
2155
+ "learning_rate": 5.815488272960388e-06,
2156
+ "loss": 0.0575,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.66,
2161
+ "learning_rate": 5.759946854183036e-06,
2162
+ "loss": 0.1047,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.67,
2167
+ "learning_rate": 5.704564449257635e-06,
2168
+ "loss": 0.2065,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.67,
2173
+ "learning_rate": 5.649343135179271e-06,
2174
+ "loss": 0.0995,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.67,
2179
+ "learning_rate": 5.59428498290167e-06,
2180
+ "loss": 0.1517,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.67,
2185
+ "learning_rate": 5.539392057259536e-06,
2186
+ "loss": 0.1122,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.67,
2191
+ "learning_rate": 5.484666416891109e-06,
2192
+ "loss": 0.0992,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.67,
2197
+ "learning_rate": 5.430110114160965e-06,
2198
+ "loss": 0.1303,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.68,
2203
+ "learning_rate": 5.375725195083046e-06,
2204
+ "loss": 0.1192,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.68,
2209
+ "learning_rate": 5.321513699243924e-06,
2210
+ "loss": 0.0991,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.68,
2215
+ "learning_rate": 5.267477659726319e-06,
2216
+ "loss": 0.077,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.68,
2221
+ "learning_rate": 5.213619103032845e-06,
2222
+ "loss": 0.1052,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.68,
2227
+ "learning_rate": 5.159940049010015e-06,
2228
+ "loss": 0.2359,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.69,
2233
+ "learning_rate": 5.106442510772489e-06,
2234
+ "loss": 0.0501,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.69,
2239
+ "learning_rate": 5.053128494627578e-06,
2240
+ "loss": 0.0803,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.69,
2245
+ "learning_rate": 5.000000000000003e-06,
2246
+ "loss": 0.2073,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.69,
2251
+ "learning_rate": 4.947059019356904e-06,
2252
+ "loss": 0.0479,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.69,
2257
+ "learning_rate": 4.89430753813313e-06,
2258
+ "loss": 0.125,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.7,
2263
+ "learning_rate": 4.8417475346567635e-06,
2264
+ "loss": 0.0715,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.7,
2269
+ "learning_rate": 4.78938098007494e-06,
2270
+ "loss": 0.0242,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.7,
2275
+ "learning_rate": 4.737209838279923e-06,
2276
+ "loss": 0.1242,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.7,
2281
+ "learning_rate": 4.685236065835443e-06,
2282
+ "loss": 0.1771,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.7,
2287
+ "learning_rate": 4.633461611903336e-06,
2288
+ "loss": 0.1037,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.7,
2293
+ "learning_rate": 4.581888418170429e-06,
2294
+ "loss": 0.0733,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.71,
2299
+ "learning_rate": 4.530518418775734e-06,
2300
+ "loss": 0.0565,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.71,
2305
+ "learning_rate": 4.479353540237903e-06,
2306
+ "loss": 0.1092,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.71,
2311
+ "learning_rate": 4.4283957013829845e-06,
2312
+ "loss": 0.0371,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.71,
2317
+ "learning_rate": 4.3776468132724605e-06,
2318
+ "loss": 0.1105,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.71,
2323
+ "learning_rate": 4.327108779131573e-06,
2324
+ "loss": 0.1856,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.72,
2329
+ "learning_rate": 4.276783494277954e-06,
2330
+ "loss": 0.1237,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.72,
2335
+ "learning_rate": 4.226672846050538e-06,
2336
+ "loss": 0.2521,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.72,
2341
+ "learning_rate": 4.176778713738787e-06,
2342
+ "loss": 0.0565,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.72,
2347
+ "learning_rate": 4.127102968512214e-06,
2348
+ "loss": 0.0518,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.72,
2353
+ "learning_rate": 4.077647473350201e-06,
2354
+ "loss": 0.0735,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.72,
2359
+ "learning_rate": 4.028414082972141e-06,
2360
+ "loss": 0.0786,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.73,
2365
+ "learning_rate": 3.9794046437678705e-06,
2366
+ "loss": 0.025,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.73,
2371
+ "learning_rate": 3.930620993728434e-06,
2372
+ "loss": 0.2235,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.73,
2377
+ "learning_rate": 3.882064962377154e-06,
2378
+ "loss": 0.1307,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.73,
2383
+ "learning_rate": 3.83373837070101e-06,
2384
+ "loss": 0.0224,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.73,
2389
+ "learning_rate": 3.7856430310823546e-06,
2390
+ "loss": 0.1109,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.74,
2395
+ "learning_rate": 3.737780747230941e-06,
2396
+ "loss": 0.0624,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.74,
2401
+ "learning_rate": 3.6901533141162804e-06,
2402
+ "loss": 0.055,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.74,
2407
+ "learning_rate": 3.6427625179003223e-06,
2408
+ "loss": 0.2079,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.74,
2413
+ "learning_rate": 3.595610135870472e-06,
2414
+ "loss": 0.2215,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.74,
2419
+ "learning_rate": 3.548697936372937e-06,
2420
+ "loss": 0.1016,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.74,
2425
+ "learning_rate": 3.5020276787464058e-06,
2426
+ "loss": 0.1229,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.75,
2431
+ "learning_rate": 3.455601113256073e-06,
2432
+ "loss": 0.0759,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.75,
2437
+ "learning_rate": 3.4094199810279926e-06,
2438
+ "loss": 0.1667,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.75,
2443
+ "learning_rate": 3.3634860139837877e-06,
2444
+ "loss": 0.048,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.75,
2449
+ "learning_rate": 3.317800934775696e-06,
2450
+ "loss": 0.0543,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.75,
2455
+ "learning_rate": 3.2723664567219627e-06,
2456
+ "loss": 0.1656,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.76,
2461
+ "learning_rate": 3.2271842837425917e-06,
2462
+ "loss": 0.0409,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.76,
2467
+ "learning_rate": 3.1822561102954373e-06,
2468
+ "loss": 0.1173,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.76,
2473
+ "learning_rate": 3.1375836213126653e-06,
2474
+ "loss": 0.0964,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.76,
2479
+ "learning_rate": 3.0931684921375572e-06,
2480
+ "loss": 0.0432,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.76,
2485
+ "learning_rate": 3.0490123884616795e-06,
2486
+ "loss": 0.1451,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.77,
2491
+ "learning_rate": 3.0051169662624224e-06,
2492
+ "loss": 0.1226,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.77,
2497
+ "learning_rate": 2.9614838717408866e-06,
2498
+ "loss": 0.096,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.77,
2503
+ "learning_rate": 2.918114741260156e-06,
2504
+ "loss": 0.1152,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.77,
2509
+ "learning_rate": 2.8750112012839215e-06,
2510
+ "loss": 0.0575,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.77,
2515
+ "learning_rate": 2.8321748683154893e-06,
2516
+ "loss": 0.097,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.77,
2521
+ "learning_rate": 2.7896073488371535e-06,
2522
+ "loss": 0.0513,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.78,
2527
+ "learning_rate": 2.7473102392499517e-06,
2528
+ "loss": 0.0566,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.78,
2533
+ "learning_rate": 2.7052851258137936e-06,
2534
+ "loss": 0.0193,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.78,
2539
+ "learning_rate": 2.663533584587974e-06,
2540
+ "loss": 0.1507,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.78,
2545
+ "learning_rate": 2.622057181372063e-06,
2546
+ "loss": 0.0208,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.78,
2551
+ "learning_rate": 2.580857471647186e-06,
2552
+ "loss": 0.0893,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.79,
2557
+ "learning_rate": 2.539936000517689e-06,
2558
+ "loss": 0.0988,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.79,
2563
+ "learning_rate": 2.4992943026531935e-06,
2564
+ "loss": 0.0368,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.79,
2569
+ "learning_rate": 2.4589339022310386e-06,
2570
+ "loss": 0.0911,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.79,
2575
+ "learning_rate": 2.4188563128791255e-06,
2576
+ "loss": 0.1093,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.79,
2581
+ "learning_rate": 2.379063037619146e-06,
2582
+ "loss": 0.0717,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.79,
2587
+ "learning_rate": 2.339555568810221e-06,
2588
+ "loss": 0.1486,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.8,
2593
+ "learning_rate": 2.300335388092929e-06,
2594
+ "loss": 0.1174,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.8,
2599
+ "learning_rate": 2.261403966333742e-06,
2600
+ "loss": 0.2022,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.8,
2605
+ "learning_rate": 2.2227627635698624e-06,
2606
+ "loss": 0.0376,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.8,
2611
+ "learning_rate": 2.1844132289544684e-06,
2612
+ "loss": 0.3022,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.8,
2617
+ "learning_rate": 2.1463568007023706e-06,
2618
+ "loss": 0.0121,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.81,
2623
+ "learning_rate": 2.1085949060360654e-06,
2624
+ "loss": 0.1441,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.81,
2629
+ "learning_rate": 2.0711289611322204e-06,
2630
+ "loss": 0.0457,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.81,
2635
+ "learning_rate": 2.0339603710685574e-06,
2636
+ "loss": 0.0324,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.81,
2641
+ "learning_rate": 1.9970905297711606e-06,
2642
+ "loss": 0.045,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.81,
2647
+ "learning_rate": 1.9605208199621993e-06,
2648
+ "loss": 0.0644,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.82,
2653
+ "learning_rate": 1.924252613108073e-06,
2654
+ "loss": 0.0743,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.82,
2659
+ "learning_rate": 1.8882872693679787e-06,
2660
+ "loss": 0.054,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.82,
2665
+ "learning_rate": 1.8526261375428955e-06,
2666
+ "loss": 0.1679,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.82,
2671
+ "learning_rate": 1.8172705550250093e-06,
2672
+ "loss": 0.0666,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.82,
2677
+ "learning_rate": 1.7822218477475496e-06,
2678
+ "loss": 0.2,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.82,
2683
+ "learning_rate": 1.7474813301350668e-06,
2684
+ "loss": 0.1191,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.83,
2689
+ "learning_rate": 1.7130503050541368e-06,
2690
+ "loss": 0.1166,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.83,
2695
+ "learning_rate": 1.6789300637645e-06,
2696
+ "loss": 0.0089,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.83,
2701
+ "learning_rate": 1.6451218858706374e-06,
2702
+ "loss": 0.0848,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.83,
2707
+ "learning_rate": 1.6116270392737753e-06,
2708
+ "loss": 0.1263,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.83,
2713
+ "learning_rate": 1.578446780124344e-06,
2714
+ "loss": 0.1338,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.84,
2719
+ "learning_rate": 1.5455823527748626e-06,
2720
+ "loss": 0.0566,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.84,
2725
+ "learning_rate": 1.5130349897332764e-06,
2726
+ "loss": 0.0618,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.84,
2731
+ "learning_rate": 1.4808059116167306e-06,
2732
+ "loss": 0.0259,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.84,
2737
+ "learning_rate": 1.4488963271057943e-06,
2738
+ "loss": 0.1682,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.84,
2743
+ "learning_rate": 1.4173074328991376e-06,
2744
+ "loss": 0.0967,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.84,
2749
+ "learning_rate": 1.3860404136686411e-06,
2750
+ "loss": 0.0799,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.85,
2755
+ "learning_rate": 1.355096442014977e-06,
2756
+ "loss": 0.1426,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.85,
2761
+ "learning_rate": 1.3244766784236307e-06,
2762
+ "loss": 0.1401,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.85,
2767
+ "learning_rate": 1.294182271221377e-06,
2768
+ "loss": 0.0526,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.85,
2773
+ "learning_rate": 1.2642143565332154e-06,
2774
+ "loss": 0.1516,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.85,
2779
+ "learning_rate": 1.2345740582397647e-06,
2780
+ "loss": 0.0326,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.86,
2785
+ "learning_rate": 1.2052624879351105e-06,
2786
+ "loss": 0.0517,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.86,
2791
+ "learning_rate": 1.176280744885121e-06,
2792
+ "loss": 0.094,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.86,
2797
+ "learning_rate": 1.1476299159862204e-06,
2798
+ "loss": 0.0684,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.86,
2803
+ "learning_rate": 1.1193110757246251e-06,
2804
+ "loss": 0.0845,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.86,
2809
+ "learning_rate": 1.09132528613605e-06,
2810
+ "loss": 0.1105,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.87,
2815
+ "learning_rate": 1.0636735967658785e-06,
2816
+ "loss": 0.0947,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.87,
2821
+ "learning_rate": 1.0363570446297999e-06,
2822
+ "loss": 0.0685,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.87,
2827
+ "learning_rate": 1.0093766541749206e-06,
2828
+ "loss": 0.0902,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.87,
2833
+ "learning_rate": 9.827334372413444e-07,
2834
+ "loss": 0.0257,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.87,
2839
+ "learning_rate": 9.564283930242258e-07,
2840
+ "loss": 0.1048,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.87,
2845
+ "learning_rate": 9.304625080362939e-07,
2846
+ "loss": 0.1365,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.88,
2851
+ "learning_rate": 9.048367560708604e-07,
2852
+ "loss": 0.2323,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.88,
2857
+ "learning_rate": 8.79552098165296e-07,
2858
+ "loss": 0.0435,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.88,
2863
+ "learning_rate": 8.546094825649909e-07,
2864
+ "loss": 0.0644,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.88,
2869
+ "learning_rate": 8.300098446877925e-07,
2870
+ "loss": 0.0884,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.88,
2875
+ "learning_rate": 8.057541070889229e-07,
2876
+ "loss": 0.1381,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.89,
2881
+ "learning_rate": 7.818431794263837e-07,
2882
+ "loss": 0.0472,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.89,
2887
+ "learning_rate": 7.582779584268374e-07,
2888
+ "loss": 0.0606,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.89,
2893
+ "learning_rate": 7.350593278519824e-07,
2894
+ "loss": 0.0325,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.89,
2899
+ "learning_rate": 7.121881584654056e-07,
2900
+ "loss": 0.0391,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.89,
2905
+ "learning_rate": 6.896653079999249e-07,
2906
+ "loss": 0.0965,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.89,
2911
+ "learning_rate": 6.67491621125429e-07,
2912
+ "loss": 0.0288,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.9,
2917
+ "learning_rate": 6.45667929417193e-07,
2918
+ "loss": 0.0608,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.9,
2923
+ "learning_rate": 6.241950513246931e-07,
2924
+ "loss": 0.0619,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.9,
2929
+ "learning_rate": 6.030737921409169e-07,
2930
+ "loss": 0.2691,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.9,
2935
+ "learning_rate": 5.823049439721562e-07,
2936
+ "loss": 0.1071,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.9,
2941
+ "learning_rate": 5.618892857083069e-07,
2942
+ "loss": 0.1501,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.91,
2947
+ "learning_rate": 5.418275829936537e-07,
2948
+ "loss": 0.0807,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.91,
2953
+ "learning_rate": 5.221205881981594e-07,
2954
+ "loss": 0.0666,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.91,
2959
+ "learning_rate": 5.027690403892461e-07,
2960
+ "loss": 0.0993,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.91,
2965
+ "learning_rate": 4.837736653040825e-07,
2966
+ "loss": 0.2467,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.91,
2971
+ "learning_rate": 4.6513517532236096e-07,
2972
+ "loss": 0.0563,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.91,
2977
+ "learning_rate": 4.468542694395861e-07,
2978
+ "loss": 0.0792,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.92,
2983
+ "learning_rate": 4.2893163324085886e-07,
2984
+ "loss": 0.0648,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.92,
2989
+ "learning_rate": 4.113679388751635e-07,
2990
+ "loss": 0.3011,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.92,
2995
+ "learning_rate": 3.941638450301644e-07,
2996
+ "loss": 0.221,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.92,
3001
+ "learning_rate": 3.773199969074959e-07,
3002
+ "loss": 0.0961,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.92,
3007
+ "learning_rate": 3.608370261985761e-07,
3008
+ "loss": 0.0816,
3009
+ "step": 500
3010
+ }
3011
+ ],
3012
+ "logging_steps": 1.0,
3013
+ "max_steps": 541,
3014
+ "num_input_tokens_seen": 0,
3015
+ "num_train_epochs": 1,
3016
+ "save_steps": 500,
3017
+ "total_flos": 1194534973440.0,
3018
+ "train_batch_size": 10,
3019
+ "trial_name": null,
3020
+ "trial_params": null
3021
+ }
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39a1b7853796df569dea25e1cfc44a0eebd9c31bc3cf60c516910866a1ef6ae7
3
+ size 6968
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b",
3
+ "architectures": [
4
+ "LlavaMistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "freeze_mm_mlp_adapter": false,
10
+ "freeze_mm_vision_resampler": false,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_aspect_ratio": "anyres",
14
+ "image_crop_resolution": 224,
15
+ "image_grid_pinpoints": [
16
+ [
17
+ 336,
18
+ 672
19
+ ],
20
+ [
21
+ 672,
22
+ 336
23
+ ],
24
+ [
25
+ 672,
26
+ 672
27
+ ],
28
+ [
29
+ 1008,
30
+ 336
31
+ ],
32
+ [
33
+ 336,
34
+ 1008
35
+ ]
36
+ ],
37
+ "image_split_resolution": 224,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 14336,
40
+ "max_position_embeddings": 32768,
41
+ "mm_hidden_size": 1024,
42
+ "mm_patch_merge_type": "spatial_unpad",
43
+ "mm_projector_lr": 2e-05,
44
+ "mm_projector_type": "mlp2x_gelu",
45
+ "mm_resampler_type": null,
46
+ "mm_use_im_patch_token": false,
47
+ "mm_use_im_start_end": false,
48
+ "mm_vision_select_feature": "patch",
49
+ "mm_vision_select_layer": -2,
50
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
51
+ "mm_vision_tower_lr": 2e-06,
52
+ "model_type": "llava_mistral",
53
+ "num_attention_heads": 32,
54
+ "num_hidden_layers": 32,
55
+ "num_key_value_heads": 8,
56
+ "rms_norm_eps": 1e-05,
57
+ "rope_theta": 1000000.0,
58
+ "sliding_window": null,
59
+ "tie_word_embeddings": false,
60
+ "tokenizer_model_max_length": 4096,
61
+ "tokenizer_padding_side": "right",
62
+ "torch_dtype": "bfloat16",
63
+ "transformers_version": "4.37.2",
64
+ "tune_mm_mlp_adapter": false,
65
+ "tune_mm_vision_resampler": false,
66
+ "unfreeze_mm_vision_tower": true,
67
+ "use_cache": true,
68
+ "use_mm_proj": true,
69
+ "vocab_size": 32000
70
+ }
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0102c05ff05f99863f06b141ed5812df27620d7c8dd7551f8bac60d6b2f9f0e
3
+ size 41961648
CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json ADDED
@@ -0,0 +1,3276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 541,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 7.142857142857143e-07,
14
+ "loss": 0.6789,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.0,
19
+ "learning_rate": 1.4285714285714286e-06,
20
+ "loss": 0.8481,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 2.1428571428571427e-06,
26
+ "loss": 0.663,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 2.8571428571428573e-06,
32
+ "loss": 0.679,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 3.5714285714285718e-06,
38
+ "loss": 1.0166,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.01,
43
+ "learning_rate": 4.2857142857142855e-06,
44
+ "loss": 0.4693,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "learning_rate": 5e-06,
50
+ "loss": 0.4891,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.01,
55
+ "learning_rate": 5.7142857142857145e-06,
56
+ "loss": 0.5523,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.02,
61
+ "learning_rate": 6.4285714285714295e-06,
62
+ "loss": 0.2909,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.02,
67
+ "learning_rate": 7.1428571428571436e-06,
68
+ "loss": 0.2598,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.02,
73
+ "learning_rate": 7.857142857142858e-06,
74
+ "loss": 0.2532,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.02,
79
+ "learning_rate": 7.857142857142858e-06,
80
+ "loss": 0.4867,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.02,
85
+ "learning_rate": 8.571428571428571e-06,
86
+ "loss": 0.4145,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "learning_rate": 8.571428571428571e-06,
92
+ "loss": 0.3161,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.03,
97
+ "learning_rate": 9.285714285714288e-06,
98
+ "loss": 0.1836,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.03,
103
+ "learning_rate": 1e-05,
104
+ "loss": 0.3355,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.03,
109
+ "learning_rate": 1.0714285714285714e-05,
110
+ "loss": 0.2286,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.03,
115
+ "learning_rate": 1.1428571428571429e-05,
116
+ "loss": 0.3594,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.04,
121
+ "learning_rate": 1.2142857142857142e-05,
122
+ "loss": 0.2981,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.04,
127
+ "learning_rate": 1.2857142857142859e-05,
128
+ "loss": 0.3021,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.04,
133
+ "learning_rate": 1.3571428571428574e-05,
134
+ "loss": 0.3866,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.04,
139
+ "learning_rate": 1.4285714285714287e-05,
140
+ "loss": 0.2409,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.04,
145
+ "learning_rate": 1.5000000000000002e-05,
146
+ "loss": 0.1397,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.04,
151
+ "learning_rate": 1.5714285714285715e-05,
152
+ "loss": 0.1416,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.05,
157
+ "learning_rate": 1.642857142857143e-05,
158
+ "loss": 0.1838,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.05,
163
+ "learning_rate": 1.7142857142857142e-05,
164
+ "loss": 0.1505,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.05,
169
+ "learning_rate": 1.785714285714286e-05,
170
+ "loss": 0.3278,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.05,
175
+ "learning_rate": 1.8571428571428575e-05,
176
+ "loss": 0.2567,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.05,
181
+ "learning_rate": 1.928571428571429e-05,
182
+ "loss": 0.1218,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.06,
187
+ "learning_rate": 2e-05,
188
+ "loss": 0.2288,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.06,
193
+ "learning_rate": 1.9999812486015525e-05,
194
+ "loss": 0.1348,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.06,
199
+ "learning_rate": 1.9999249951094388e-05,
200
+ "loss": 0.3734,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.06,
205
+ "learning_rate": 1.999831241633323e-05,
206
+ "loss": 0.3169,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.06,
211
+ "learning_rate": 1.9996999916892222e-05,
212
+ "loss": 0.1066,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.06,
217
+ "learning_rate": 1.9995312501993765e-05,
218
+ "loss": 0.4434,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.07,
223
+ "learning_rate": 1.9993250234920638e-05,
224
+ "loss": 0.198,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.07,
229
+ "learning_rate": 1.9990813193013625e-05,
230
+ "loss": 0.115,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.07,
235
+ "learning_rate": 1.9988001467668613e-05,
236
+ "loss": 0.2676,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.07,
241
+ "learning_rate": 1.9984815164333163e-05,
242
+ "loss": 0.2201,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.07,
247
+ "learning_rate": 1.9981254402502568e-05,
248
+ "loss": 0.1945,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.08,
253
+ "learning_rate": 1.997731931571535e-05,
254
+ "loss": 0.1391,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.08,
259
+ "learning_rate": 1.9973010051548274e-05,
260
+ "loss": 0.2697,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.08,
265
+ "learning_rate": 1.9968326771610797e-05,
266
+ "loss": 0.1562,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.08,
271
+ "learning_rate": 1.9963269651539018e-05,
272
+ "loss": 0.2204,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.08,
277
+ "learning_rate": 1.9957838880989076e-05,
278
+ "loss": 0.2729,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.09,
283
+ "learning_rate": 1.9952034663630064e-05,
284
+ "loss": 0.441,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.09,
289
+ "learning_rate": 1.9952034663630064e-05,
290
+ "loss": 0.1401,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.09,
295
+ "learning_rate": 1.9945857217136365e-05,
296
+ "loss": 0.3727,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.09,
301
+ "learning_rate": 1.9939306773179498e-05,
302
+ "loss": 0.3269,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.09,
307
+ "learning_rate": 1.9932383577419432e-05,
308
+ "loss": 0.0801,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.09,
313
+ "learning_rate": 1.9925087889495374e-05,
314
+ "loss": 0.2772,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.1,
319
+ "learning_rate": 1.9917419983016025e-05,
320
+ "loss": 0.2253,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.1,
325
+ "learning_rate": 1.9909380145549325e-05,
326
+ "loss": 0.2318,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.1,
331
+ "learning_rate": 1.9900968678611664e-05,
332
+ "loss": 0.1809,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.1,
337
+ "learning_rate": 1.989218589765658e-05,
338
+ "loss": 0.1155,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.1,
343
+ "learning_rate": 1.9883032132062926e-05,
344
+ "loss": 0.2356,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.11,
349
+ "learning_rate": 1.9873507725122505e-05,
350
+ "loss": 0.1194,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.11,
355
+ "learning_rate": 1.9863613034027224e-05,
356
+ "loss": 0.3272,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.11,
361
+ "learning_rate": 1.985334842985567e-05,
362
+ "loss": 0.183,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.11,
367
+ "learning_rate": 1.9842714297559212e-05,
368
+ "loss": 0.1217,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.11,
373
+ "learning_rate": 1.9831711035947552e-05,
374
+ "loss": 0.1388,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.11,
379
+ "learning_rate": 1.9820339057673773e-05,
380
+ "loss": 0.2112,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.12,
385
+ "learning_rate": 1.9808598789218866e-05,
386
+ "loss": 0.0917,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.12,
391
+ "learning_rate": 1.979649067087574e-05,
392
+ "loss": 0.1585,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.12,
397
+ "learning_rate": 1.9784015156732693e-05,
398
+ "loss": 0.1446,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.12,
403
+ "learning_rate": 1.97711727146564e-05,
404
+ "loss": 0.3511,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.12,
409
+ "learning_rate": 1.9757963826274357e-05,
410
+ "loss": 0.1019,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.13,
415
+ "learning_rate": 1.9744388986956824e-05,
416
+ "loss": 0.1165,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.13,
421
+ "learning_rate": 1.973044870579824e-05,
422
+ "loss": 0.2189,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.13,
427
+ "learning_rate": 1.971614350559814e-05,
428
+ "loss": 0.1254,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.13,
433
+ "learning_rate": 1.970147392284154e-05,
434
+ "loss": 0.0627,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.13,
439
+ "learning_rate": 1.9686440507678827e-05,
440
+ "loss": 0.0952,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.13,
445
+ "learning_rate": 1.967104382390511e-05,
446
+ "loss": 0.1867,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.14,
451
+ "learning_rate": 1.9655284448939094e-05,
452
+ "loss": 0.2003,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.14,
457
+ "learning_rate": 1.9639162973801426e-05,
458
+ "loss": 0.1188,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.14,
463
+ "learning_rate": 1.9622680003092503e-05,
464
+ "loss": 0.1111,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.14,
469
+ "learning_rate": 1.960583615496984e-05,
470
+ "loss": 0.1203,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.14,
475
+ "learning_rate": 1.9588632061124837e-05,
476
+ "loss": 0.1599,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.15,
481
+ "learning_rate": 1.9571068366759143e-05,
482
+ "loss": 0.209,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.15,
487
+ "learning_rate": 1.9553145730560415e-05,
488
+ "loss": 0.2183,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.15,
493
+ "learning_rate": 1.953486482467764e-05,
494
+ "loss": 0.1351,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.15,
499
+ "learning_rate": 1.951622633469592e-05,
500
+ "loss": 0.128,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.15,
505
+ "learning_rate": 1.9497230959610757e-05,
506
+ "loss": 0.2241,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.16,
511
+ "learning_rate": 1.9477879411801843e-05,
512
+ "loss": 0.0991,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.16,
517
+ "learning_rate": 1.9458172417006347e-05,
518
+ "loss": 0.1165,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.16,
523
+ "learning_rate": 1.9438110714291697e-05,
524
+ "loss": 0.0792,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.16,
529
+ "learning_rate": 1.9417695056027847e-05,
530
+ "loss": 0.121,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.16,
535
+ "learning_rate": 1.9396926207859085e-05,
536
+ "loss": 0.2727,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.16,
541
+ "learning_rate": 1.9375804948675308e-05,
542
+ "loss": 0.1947,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.17,
547
+ "learning_rate": 1.935433207058281e-05,
548
+ "loss": 0.2155,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.17,
553
+ "learning_rate": 1.933250837887457e-05,
554
+ "loss": 0.0525,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.17,
559
+ "learning_rate": 1.9310334692000077e-05,
560
+ "loss": 0.2401,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.17,
565
+ "learning_rate": 1.9287811841534598e-05,
566
+ "loss": 0.0743,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.17,
571
+ "learning_rate": 1.9264940672148018e-05,
572
+ "loss": 0.1659,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.18,
577
+ "learning_rate": 1.9241722041573166e-05,
578
+ "loss": 0.1184,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.18,
583
+ "learning_rate": 1.9218156820573618e-05,
584
+ "loss": 0.1207,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.18,
589
+ "learning_rate": 1.9194245892911077e-05,
590
+ "loss": 0.1292,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.18,
595
+ "learning_rate": 1.916999015531221e-05,
596
+ "loss": 0.2059,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.18,
601
+ "learning_rate": 1.9145390517435013e-05,
602
+ "loss": 0.1682,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.18,
607
+ "learning_rate": 1.9120447901834708e-05,
608
+ "loss": 0.1403,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.19,
613
+ "learning_rate": 1.9095163243929143e-05,
614
+ "loss": 0.1752,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.19,
619
+ "learning_rate": 1.906953749196371e-05,
620
+ "loss": 0.1616,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.19,
625
+ "learning_rate": 1.9043571606975776e-05,
626
+ "loss": 0.1127,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.19,
631
+ "learning_rate": 1.901726656275866e-05,
632
+ "loss": 0.2236,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.19,
637
+ "learning_rate": 1.8990623345825084e-05,
638
+ "loss": 0.2308,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.2,
643
+ "learning_rate": 1.8963642955370203e-05,
644
+ "loss": 0.1739,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.2,
649
+ "learning_rate": 1.8936326403234125e-05,
650
+ "loss": 0.1762,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.2,
655
+ "learning_rate": 1.890867471386395e-05,
656
+ "loss": 0.1457,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.2,
661
+ "learning_rate": 1.888068892427538e-05,
662
+ "loss": 0.2768,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.2,
667
+ "learning_rate": 1.8852370084013783e-05,
668
+ "loss": 0.1389,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.21,
673
+ "learning_rate": 1.882371925511488e-05,
674
+ "loss": 0.2747,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.21,
679
+ "learning_rate": 1.879473751206489e-05,
680
+ "loss": 0.0542,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.21,
685
+ "learning_rate": 1.8765425941760237e-05,
686
+ "loss": 0.1414,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.21,
691
+ "learning_rate": 1.8735785643466786e-05,
692
+ "loss": 0.2482,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.21,
697
+ "learning_rate": 1.8705817728778626e-05,
698
+ "loss": 0.1602,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.21,
703
+ "learning_rate": 1.867552332157637e-05,
704
+ "loss": 0.1342,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.22,
709
+ "learning_rate": 1.8644903557985027e-05,
710
+ "loss": 0.077,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.22,
715
+ "learning_rate": 1.8613959586331364e-05,
716
+ "loss": 0.0818,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.22,
721
+ "learning_rate": 1.8582692567100866e-05,
722
+ "loss": 0.1443,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.22,
727
+ "learning_rate": 1.855110367289421e-05,
728
+ "loss": 0.1148,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.22,
733
+ "learning_rate": 1.851919408838327e-05,
734
+ "loss": 0.1661,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.23,
739
+ "learning_rate": 1.8486965010266726e-05,
740
+ "loss": 0.1676,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.23,
745
+ "learning_rate": 1.845441764722514e-05,
746
+ "loss": 0.1288,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.23,
751
+ "learning_rate": 1.842155321987566e-05,
752
+ "loss": 0.0725,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.23,
757
+ "learning_rate": 1.8388372960726228e-05,
758
+ "loss": 0.1258,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.23,
763
+ "learning_rate": 1.8354878114129368e-05,
764
+ "loss": 0.068,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.23,
769
+ "learning_rate": 1.8321069936235503e-05,
770
+ "loss": 0.1698,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.24,
775
+ "learning_rate": 1.8286949694945864e-05,
776
+ "loss": 0.2038,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.24,
781
+ "learning_rate": 1.8252518669864935e-05,
782
+ "loss": 0.0274,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.24,
787
+ "learning_rate": 1.821777815225245e-05,
788
+ "loss": 0.0564,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.24,
793
+ "learning_rate": 1.8182729444974993e-05,
794
+ "loss": 0.1182,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.24,
799
+ "learning_rate": 1.8147373862457107e-05,
800
+ "loss": 0.3175,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.25,
805
+ "learning_rate": 1.8111712730632024e-05,
806
+ "loss": 0.1017,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.25,
811
+ "learning_rate": 1.807574738689193e-05,
812
+ "loss": 0.3348,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.25,
817
+ "learning_rate": 1.8039479180037803e-05,
818
+ "loss": 0.3129,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.25,
823
+ "learning_rate": 1.800290947022884e-05,
824
+ "loss": 0.1095,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.25,
829
+ "learning_rate": 1.7966039628931447e-05,
830
+ "loss": 0.1922,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.26,
835
+ "learning_rate": 1.7928871038867785e-05,
836
+ "loss": 0.1022,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.26,
841
+ "learning_rate": 1.789140509396394e-05,
842
+ "loss": 0.2318,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.26,
847
+ "learning_rate": 1.7853643199297632e-05,
848
+ "loss": 0.2374,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.26,
853
+ "learning_rate": 1.7815586771045535e-05,
854
+ "loss": 0.1194,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.26,
859
+ "learning_rate": 1.777723723643014e-05,
860
+ "loss": 0.1914,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.26,
865
+ "learning_rate": 1.773859603366626e-05,
866
+ "loss": 0.0431,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.27,
871
+ "learning_rate": 1.769966461190707e-05,
872
+ "loss": 0.081,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.27,
877
+ "learning_rate": 1.766044443118978e-05,
878
+ "loss": 0.2162,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.27,
883
+ "learning_rate": 1.762093696238086e-05,
884
+ "loss": 0.1151,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.27,
889
+ "learning_rate": 1.7581143687120877e-05,
890
+ "loss": 0.184,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.27,
895
+ "learning_rate": 1.7541066097768965e-05,
896
+ "loss": 0.1963,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.28,
901
+ "learning_rate": 1.750070569734681e-05,
902
+ "loss": 0.1318,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.28,
907
+ "learning_rate": 1.7460063999482314e-05,
908
+ "loss": 0.1163,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.28,
913
+ "learning_rate": 1.7419142528352815e-05,
914
+ "loss": 0.1013,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.28,
919
+ "learning_rate": 1.737794281862794e-05,
920
+ "loss": 0.0957,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.28,
925
+ "learning_rate": 1.7336466415412028e-05,
926
+ "loss": 0.2023,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.28,
931
+ "learning_rate": 1.729471487418621e-05,
932
+ "loss": 0.1398,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.29,
937
+ "learning_rate": 1.7252689760750053e-05,
938
+ "loss": 0.1238,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.29,
943
+ "learning_rate": 1.721039265116285e-05,
944
+ "loss": 0.2201,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.29,
949
+ "learning_rate": 1.7167825131684516e-05,
950
+ "loss": 0.0698,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.29,
955
+ "learning_rate": 1.7124988798716084e-05,
956
+ "loss": 0.0312,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.29,
961
+ "learning_rate": 1.7081885258739846e-05,
962
+ "loss": 0.1443,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.3,
967
+ "learning_rate": 1.7038516128259118e-05,
968
+ "loss": 0.1349,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.3,
973
+ "learning_rate": 1.6994883033737582e-05,
974
+ "loss": 0.0751,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.3,
979
+ "learning_rate": 1.695098761153832e-05,
980
+ "loss": 0.0543,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.3,
985
+ "learning_rate": 1.6906831507862446e-05,
986
+ "loss": 0.0533,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.3,
991
+ "learning_rate": 1.686241637868734e-05,
992
+ "loss": 0.1328,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.3,
997
+ "learning_rate": 1.6817743889704564e-05,
998
+ "loss": 0.3057,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.31,
1003
+ "learning_rate": 1.6772815716257414e-05,
1004
+ "loss": 0.1642,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.31,
1009
+ "learning_rate": 1.672763354327804e-05,
1010
+ "loss": 0.1479,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.31,
1015
+ "learning_rate": 1.6682199065224307e-05,
1016
+ "loss": 0.1163,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.31,
1021
+ "learning_rate": 1.6636513986016215e-05,
1022
+ "loss": 0.0395,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.31,
1027
+ "learning_rate": 1.6590580018972012e-05,
1028
+ "loss": 0.0456,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.32,
1033
+ "learning_rate": 1.6544398886743934e-05,
1034
+ "loss": 0.2018,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.32,
1039
+ "learning_rate": 1.64979723212536e-05,
1040
+ "loss": 0.1655,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.32,
1045
+ "learning_rate": 1.6451302063627067e-05,
1046
+ "loss": 0.1805,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.32,
1051
+ "learning_rate": 1.6404389864129533e-05,
1052
+ "loss": 0.2445,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.32,
1057
+ "learning_rate": 1.6357237482099682e-05,
1058
+ "loss": 0.134,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.33,
1063
+ "learning_rate": 1.6309846685883726e-05,
1064
+ "loss": 0.0976,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.33,
1069
+ "learning_rate": 1.6262219252769065e-05,
1070
+ "loss": 0.0984,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.33,
1075
+ "learning_rate": 1.621435696891765e-05,
1076
+ "loss": 0.0495,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.33,
1081
+ "learning_rate": 1.6166261629298996e-05,
1082
+ "loss": 0.1005,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.33,
1087
+ "learning_rate": 1.6117935037622848e-05,
1088
+ "loss": 0.1399,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.33,
1093
+ "learning_rate": 1.606937900627157e-05,
1094
+ "loss": 0.2105,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.34,
1099
+ "learning_rate": 1.6020595356232137e-05,
1100
+ "loss": 0.142,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.34,
1105
+ "learning_rate": 1.5971585917027864e-05,
1106
+ "loss": 0.0791,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.34,
1111
+ "learning_rate": 1.5922352526649803e-05,
1112
+ "loss": 0.2,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.34,
1117
+ "learning_rate": 1.587289703148779e-05,
1118
+ "loss": 0.1317,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.34,
1123
+ "learning_rate": 1.5823221286261217e-05,
1124
+ "loss": 0.1656,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.35,
1129
+ "learning_rate": 1.5773327153949465e-05,
1130
+ "loss": 0.3358,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.35,
1135
+ "learning_rate": 1.572321650572205e-05,
1136
+ "loss": 0.2216,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.35,
1141
+ "learning_rate": 1.567289122086843e-05,
1142
+ "loss": 0.0937,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.35,
1147
+ "learning_rate": 1.5622353186727542e-05,
1148
+ "loss": 0.0995,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.35,
1153
+ "learning_rate": 1.557160429861702e-05,
1154
+ "loss": 0.2324,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.35,
1159
+ "learning_rate": 1.5520646459762102e-05,
1160
+ "loss": 0.2847,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.36,
1165
+ "learning_rate": 1.5469481581224274e-05,
1166
+ "loss": 0.1242,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.36,
1171
+ "learning_rate": 1.5418111581829575e-05,
1172
+ "loss": 0.1771,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.36,
1177
+ "learning_rate": 1.536653838809667e-05,
1178
+ "loss": 0.2115,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.36,
1183
+ "learning_rate": 1.531476393416456e-05,
1184
+ "loss": 0.074,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.36,
1189
+ "learning_rate": 1.5262790161720082e-05,
1190
+ "loss": 0.0893,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.37,
1195
+ "learning_rate": 1.5210619019925066e-05,
1196
+ "loss": 0.0644,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.37,
1201
+ "learning_rate": 1.5158252465343242e-05,
1202
+ "loss": 0.2146,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.37,
1207
+ "learning_rate": 1.5105692461866874e-05,
1208
+ "loss": 0.2579,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.37,
1213
+ "learning_rate": 1.50529409806431e-05,
1214
+ "loss": 0.0806,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.37,
1219
+ "learning_rate": 1.5000000000000002e-05,
1220
+ "loss": 0.0806,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.38,
1225
+ "learning_rate": 1.4946871505372426e-05,
1226
+ "loss": 0.132,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.38,
1231
+ "learning_rate": 1.4893557489227518e-05,
1232
+ "loss": 0.1438,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.38,
1237
+ "learning_rate": 1.4840059950989992e-05,
1238
+ "loss": 0.1703,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.38,
1243
+ "learning_rate": 1.478638089696716e-05,
1244
+ "loss": 0.0903,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.38,
1249
+ "learning_rate": 1.4732522340273686e-05,
1250
+ "loss": 0.1515,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.38,
1255
+ "learning_rate": 1.467848630075608e-05,
1256
+ "loss": 0.2156,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.39,
1261
+ "learning_rate": 1.4624274804916958e-05,
1262
+ "loss": 0.0783,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.39,
1267
+ "learning_rate": 1.456988988583904e-05,
1268
+ "loss": 0.1432,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.39,
1273
+ "learning_rate": 1.4515333583108896e-05,
1274
+ "loss": 0.1716,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.39,
1279
+ "learning_rate": 1.4460607942740468e-05,
1280
+ "loss": 0.2328,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.39,
1285
+ "learning_rate": 1.4405715017098333e-05,
1286
+ "loss": 0.1317,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.4,
1291
+ "learning_rate": 1.4350656864820733e-05,
1292
+ "loss": 0.097,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.4,
1297
+ "learning_rate": 1.4295435550742372e-05,
1298
+ "loss": 0.1547,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.4,
1303
+ "learning_rate": 1.4240053145816968e-05,
1304
+ "loss": 0.0737,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.4,
1309
+ "learning_rate": 1.4184511727039612e-05,
1310
+ "loss": 0.0926,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.4,
1315
+ "learning_rate": 1.4128813377368851e-05,
1316
+ "loss": 0.0824,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.4,
1321
+ "learning_rate": 1.4072960185648576e-05,
1322
+ "loss": 0.1236,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.41,
1327
+ "learning_rate": 1.4016954246529697e-05,
1328
+ "loss": 0.157,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.41,
1333
+ "learning_rate": 1.396079766039157e-05,
1334
+ "loss": 0.1241,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.41,
1339
+ "learning_rate": 1.3904492533263243e-05,
1340
+ "loss": 0.1243,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.41,
1345
+ "learning_rate": 1.3848040976744459e-05,
1346
+ "loss": 0.1429,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.41,
1351
+ "learning_rate": 1.3791445107926478e-05,
1352
+ "loss": 0.0321,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.42,
1357
+ "learning_rate": 1.3734707049312674e-05,
1358
+ "loss": 0.0398,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.42,
1363
+ "learning_rate": 1.3677828928738934e-05,
1364
+ "loss": 0.2625,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.42,
1369
+ "learning_rate": 1.3620812879293864e-05,
1370
+ "loss": 0.0926,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.42,
1375
+ "learning_rate": 1.3563661039238785e-05,
1376
+ "loss": 0.06,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.42,
1381
+ "learning_rate": 1.3506375551927546e-05,
1382
+ "loss": 0.2397,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.43,
1387
+ "learning_rate": 1.3448958565726144e-05,
1388
+ "loss": 0.157,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.43,
1393
+ "learning_rate": 1.3391412233932148e-05,
1394
+ "loss": 0.1105,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.43,
1399
+ "learning_rate": 1.3333738714693958e-05,
1400
+ "loss": 0.0877,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.43,
1405
+ "learning_rate": 1.3275940170929845e-05,
1406
+ "loss": 0.1821,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.43,
1411
+ "learning_rate": 1.3218018770246858e-05,
1412
+ "loss": 0.0166,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.43,
1417
+ "learning_rate": 1.3159976684859528e-05,
1418
+ "loss": 0.118,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.44,
1423
+ "learning_rate": 1.3101816091508389e-05,
1424
+ "loss": 0.2289,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.44,
1429
+ "learning_rate": 1.3043539171378362e-05,
1430
+ "loss": 0.0518,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.44,
1435
+ "learning_rate": 1.2985148110016947e-05,
1436
+ "loss": 0.1012,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.44,
1441
+ "learning_rate": 1.292664509725226e-05,
1442
+ "loss": 0.2009,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.44,
1447
+ "learning_rate": 1.2868032327110904e-05,
1448
+ "loss": 0.252,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.45,
1453
+ "learning_rate": 1.2809311997735697e-05,
1454
+ "loss": 0.2044,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.45,
1459
+ "learning_rate": 1.2750486311303218e-05,
1460
+ "loss": 0.1908,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.45,
1465
+ "learning_rate": 1.2691557473941246e-05,
1466
+ "loss": 0.3064,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.45,
1471
+ "learning_rate": 1.2632527695645993e-05,
1472
+ "loss": 0.091,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.45,
1477
+ "learning_rate": 1.257339919019925e-05,
1478
+ "loss": 0.0606,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.45,
1483
+ "learning_rate": 1.2514174175085346e-05,
1484
+ "loss": 0.147,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.46,
1489
+ "learning_rate": 1.2454854871407993e-05,
1490
+ "loss": 0.2029,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.46,
1495
+ "learning_rate": 1.239544350380699e-05,
1496
+ "loss": 0.0851,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.46,
1501
+ "learning_rate": 1.2335942300374788e-05,
1502
+ "loss": 0.0904,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.46,
1507
+ "learning_rate": 1.2276353492572937e-05,
1508
+ "loss": 0.0721,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.46,
1513
+ "learning_rate": 1.2216679315148388e-05,
1514
+ "loss": 0.1488,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.47,
1519
+ "learning_rate": 1.2156922006049703e-05,
1520
+ "loss": 0.1927,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.47,
1525
+ "learning_rate": 1.2097083806343104e-05,
1526
+ "loss": 0.029,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.47,
1531
+ "learning_rate": 1.2037166960128443e-05,
1532
+ "loss": 0.0301,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.47,
1537
+ "learning_rate": 1.1977173714455034e-05,
1538
+ "loss": 0.1231,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.47,
1543
+ "learning_rate": 1.1917106319237386e-05,
1544
+ "loss": 0.0348,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.48,
1549
+ "learning_rate": 1.1856967027170818e-05,
1550
+ "loss": 0.0869,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.48,
1555
+ "learning_rate": 1.1796758093646989e-05,
1556
+ "loss": 0.1164,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.48,
1561
+ "learning_rate": 1.1736481776669307e-05,
1562
+ "loss": 0.0388,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.48,
1567
+ "learning_rate": 1.1676140336768236e-05,
1568
+ "loss": 0.0433,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.48,
1573
+ "learning_rate": 1.161573603691655e-05,
1574
+ "loss": 0.1996,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.48,
1579
+ "learning_rate": 1.1555271142444433e-05,
1580
+ "loss": 0.2182,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.49,
1585
+ "learning_rate": 1.1494747920954545e-05,
1586
+ "loss": 0.0509,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.49,
1591
+ "learning_rate": 1.1434168642236964e-05,
1592
+ "loss": 0.1078,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.49,
1597
+ "learning_rate": 1.1373535578184083e-05,
1598
+ "loss": 0.0412,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.49,
1603
+ "learning_rate": 1.1312851002705383e-05,
1604
+ "loss": 0.2425,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.49,
1609
+ "learning_rate": 1.1252117191642175e-05,
1610
+ "loss": 0.1119,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.5,
1615
+ "learning_rate": 1.1191336422682237e-05,
1616
+ "loss": 0.0455,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.5,
1621
+ "learning_rate": 1.1130510975274408e-05,
1622
+ "loss": 0.2613,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.5,
1627
+ "learning_rate": 1.1069643130543084e-05,
1628
+ "loss": 0.0651,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.5,
1633
+ "learning_rate": 1.1008735171202685e-05,
1634
+ "loss": 0.1155,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.5,
1639
+ "learning_rate": 1.0947789381472035e-05,
1640
+ "loss": 0.0661,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.5,
1645
+ "learning_rate": 1.0886808046988716e-05,
1646
+ "loss": 0.0881,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.51,
1651
+ "learning_rate": 1.0825793454723325e-05,
1652
+ "loss": 0.1123,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.51,
1657
+ "learning_rate": 1.0764747892893724e-05,
1658
+ "loss": 0.14,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.51,
1663
+ "learning_rate": 1.0703673650879219e-05,
1664
+ "loss": 0.0889,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.51,
1669
+ "learning_rate": 1.0642573019134703e-05,
1670
+ "loss": 0.1333,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.51,
1675
+ "learning_rate": 1.0581448289104759e-05,
1676
+ "loss": 0.0608,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.52,
1681
+ "learning_rate": 1.0520301753137725e-05,
1682
+ "loss": 0.2882,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.52,
1687
+ "learning_rate": 1.045913570439972e-05,
1688
+ "loss": 0.0661,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.52,
1693
+ "learning_rate": 1.0397952436788643e-05,
1694
+ "loss": 0.107,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.52,
1699
+ "learning_rate": 1.0336754244848156e-05,
1700
+ "loss": 0.0499,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.52,
1705
+ "learning_rate": 1.0275543423681622e-05,
1706
+ "loss": 0.237,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.52,
1711
+ "learning_rate": 1.0214322268866033e-05,
1712
+ "loss": 0.0301,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.53,
1717
+ "learning_rate": 1.0153093076365923e-05,
1718
+ "loss": 0.0904,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.53,
1723
+ "learning_rate": 1.0091858142447266e-05,
1724
+ "loss": 0.0165,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.53,
1729
+ "learning_rate": 1.0030619763591348e-05,
1730
+ "loss": 0.0791,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.53,
1735
+ "learning_rate": 9.969380236408656e-06,
1736
+ "loss": 0.1997,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.53,
1741
+ "learning_rate": 9.908141857552737e-06,
1742
+ "loss": 0.0155,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.54,
1747
+ "learning_rate": 9.846906923634079e-06,
1748
+ "loss": 0.0457,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.54,
1753
+ "learning_rate": 9.785677731133972e-06,
1754
+ "loss": 0.0203,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.54,
1759
+ "learning_rate": 9.724456576318383e-06,
1760
+ "loss": 0.2384,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.54,
1765
+ "learning_rate": 9.663245755151847e-06,
1766
+ "loss": 0.1459,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.54,
1771
+ "learning_rate": 9.602047563211359e-06,
1772
+ "loss": 0.2249,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.55,
1777
+ "learning_rate": 9.540864295600282e-06,
1778
+ "loss": 0.037,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.55,
1783
+ "learning_rate": 9.479698246862277e-06,
1784
+ "loss": 0.145,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.55,
1789
+ "learning_rate": 9.418551710895243e-06,
1790
+ "loss": 0.1501,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.55,
1795
+ "learning_rate": 9.3574269808653e-06,
1796
+ "loss": 0.0727,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.55,
1801
+ "learning_rate": 9.296326349120786e-06,
1802
+ "loss": 0.0992,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.55,
1807
+ "learning_rate": 9.23525210710628e-06,
1808
+ "loss": 0.2516,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.56,
1813
+ "learning_rate": 9.174206545276678e-06,
1814
+ "loss": 0.0628,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.56,
1819
+ "learning_rate": 9.113191953011287e-06,
1820
+ "loss": 0.132,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.56,
1825
+ "learning_rate": 9.052210618527966e-06,
1826
+ "loss": 0.0908,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.56,
1831
+ "learning_rate": 8.991264828797319e-06,
1832
+ "loss": 0.1432,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.56,
1837
+ "learning_rate": 8.93035686945692e-06,
1838
+ "loss": 0.0493,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.57,
1843
+ "learning_rate": 8.869489024725595e-06,
1844
+ "loss": 0.0578,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.57,
1849
+ "learning_rate": 8.808663577317765e-06,
1850
+ "loss": 0.0909,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.57,
1855
+ "learning_rate": 8.747882808357828e-06,
1856
+ "loss": 0.0646,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.57,
1861
+ "learning_rate": 8.687148997294622e-06,
1862
+ "loss": 0.1308,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.57,
1867
+ "learning_rate": 8.626464421815919e-06,
1868
+ "loss": 0.0729,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.57,
1873
+ "learning_rate": 8.565831357763039e-06,
1874
+ "loss": 0.1871,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.58,
1879
+ "learning_rate": 8.505252079045459e-06,
1880
+ "loss": 0.1577,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.58,
1885
+ "learning_rate": 8.444728857555572e-06,
1886
+ "loss": 0.1844,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.58,
1891
+ "learning_rate": 8.384263963083453e-06,
1892
+ "loss": 0.1673,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.58,
1897
+ "learning_rate": 8.323859663231768e-06,
1898
+ "loss": 0.1898,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.58,
1903
+ "learning_rate": 8.263518223330698e-06,
1904
+ "loss": 0.1106,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.59,
1909
+ "learning_rate": 8.203241906353014e-06,
1910
+ "loss": 0.0476,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.59,
1915
+ "learning_rate": 8.143032972829184e-06,
1916
+ "loss": 0.1432,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.59,
1921
+ "learning_rate": 8.082893680762619e-06,
1922
+ "loss": 0.0249,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 0.59,
1927
+ "learning_rate": 8.022826285544967e-06,
1928
+ "loss": 0.0762,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 0.59,
1933
+ "learning_rate": 7.962833039871562e-06,
1934
+ "loss": 0.1468,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 0.6,
1939
+ "learning_rate": 7.902916193656898e-06,
1940
+ "loss": 0.0272,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 0.6,
1945
+ "learning_rate": 7.843077993950302e-06,
1946
+ "loss": 0.0495,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 0.6,
1951
+ "learning_rate": 7.783320684851613e-06,
1952
+ "loss": 0.1958,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 0.6,
1957
+ "learning_rate": 7.72364650742707e-06,
1958
+ "loss": 0.0869,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 0.6,
1963
+ "learning_rate": 7.664057699625215e-06,
1964
+ "loss": 0.2957,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 0.6,
1969
+ "learning_rate": 7.604556496193015e-06,
1970
+ "loss": 0.0833,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 0.61,
1975
+ "learning_rate": 7.545145128592009e-06,
1976
+ "loss": 0.0978,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 0.61,
1981
+ "learning_rate": 7.485825824914658e-06,
1982
+ "loss": 0.1941,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 0.61,
1987
+ "learning_rate": 7.426600809800753e-06,
1988
+ "loss": 0.0384,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 0.61,
1993
+ "learning_rate": 7.367472304354011e-06,
1994
+ "loss": 0.0872,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 0.61,
1999
+ "learning_rate": 7.308442526058757e-06,
2000
+ "loss": 0.1051,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 0.62,
2005
+ "learning_rate": 7.249513688696786e-06,
2006
+ "loss": 0.0918,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 0.62,
2011
+ "learning_rate": 7.190688002264308e-06,
2012
+ "loss": 0.2169,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 0.62,
2017
+ "learning_rate": 7.131967672889101e-06,
2018
+ "loss": 0.1647,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 0.62,
2023
+ "learning_rate": 7.073354902747742e-06,
2024
+ "loss": 0.0585,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 0.62,
2029
+ "learning_rate": 7.014851889983058e-06,
2030
+ "loss": 0.1743,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 0.62,
2035
+ "learning_rate": 6.956460828621641e-06,
2036
+ "loss": 0.3001,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 0.63,
2041
+ "learning_rate": 6.898183908491617e-06,
2042
+ "loss": 0.0977,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 0.63,
2047
+ "learning_rate": 6.840023315140476e-06,
2048
+ "loss": 0.0549,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 0.63,
2053
+ "learning_rate": 6.781981229753145e-06,
2054
+ "loss": 0.0738,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 0.63,
2059
+ "learning_rate": 6.7240598290701585e-06,
2060
+ "loss": 0.027,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 0.63,
2065
+ "learning_rate": 6.666261285306048e-06,
2066
+ "loss": 0.0647,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 0.64,
2071
+ "learning_rate": 6.608587766067853e-06,
2072
+ "loss": 0.0531,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 0.64,
2077
+ "learning_rate": 6.551041434273862e-06,
2078
+ "loss": 0.0582,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 0.64,
2083
+ "learning_rate": 6.4936244480724575e-06,
2084
+ "loss": 0.2357,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 0.64,
2089
+ "learning_rate": 6.4363389607612204e-06,
2090
+ "loss": 0.0614,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 0.64,
2095
+ "learning_rate": 6.379187120706138e-06,
2096
+ "loss": 0.1516,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 0.65,
2101
+ "learning_rate": 6.322171071261071e-06,
2102
+ "loss": 0.2906,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 0.65,
2107
+ "learning_rate": 6.265292950687329e-06,
2108
+ "loss": 0.0402,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 0.65,
2113
+ "learning_rate": 6.208554892073528e-06,
2114
+ "loss": 0.0895,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 0.65,
2119
+ "learning_rate": 6.151959023255545e-06,
2120
+ "loss": 0.109,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 0.65,
2125
+ "learning_rate": 6.095507466736763e-06,
2126
+ "loss": 0.1338,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 0.65,
2131
+ "learning_rate": 6.039202339608432e-06,
2132
+ "loss": 0.0541,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 0.66,
2137
+ "learning_rate": 5.983045753470308e-06,
2138
+ "loss": 0.0614,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 0.66,
2143
+ "learning_rate": 5.927039814351426e-06,
2144
+ "loss": 0.2844,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 0.66,
2149
+ "learning_rate": 5.871186622631155e-06,
2150
+ "loss": 0.1412,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 0.66,
2155
+ "learning_rate": 5.815488272960388e-06,
2156
+ "loss": 0.0575,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 0.66,
2161
+ "learning_rate": 5.759946854183036e-06,
2162
+ "loss": 0.1047,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 0.67,
2167
+ "learning_rate": 5.704564449257635e-06,
2168
+ "loss": 0.2065,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 0.67,
2173
+ "learning_rate": 5.649343135179271e-06,
2174
+ "loss": 0.0995,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 0.67,
2179
+ "learning_rate": 5.59428498290167e-06,
2180
+ "loss": 0.1517,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 0.67,
2185
+ "learning_rate": 5.539392057259536e-06,
2186
+ "loss": 0.1122,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 0.67,
2191
+ "learning_rate": 5.484666416891109e-06,
2192
+ "loss": 0.0992,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 0.67,
2197
+ "learning_rate": 5.430110114160965e-06,
2198
+ "loss": 0.1303,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 0.68,
2203
+ "learning_rate": 5.375725195083046e-06,
2204
+ "loss": 0.1192,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 0.68,
2209
+ "learning_rate": 5.321513699243924e-06,
2210
+ "loss": 0.0991,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 0.68,
2215
+ "learning_rate": 5.267477659726319e-06,
2216
+ "loss": 0.077,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 0.68,
2221
+ "learning_rate": 5.213619103032845e-06,
2222
+ "loss": 0.1052,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 0.68,
2227
+ "learning_rate": 5.159940049010015e-06,
2228
+ "loss": 0.2359,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 0.69,
2233
+ "learning_rate": 5.106442510772489e-06,
2234
+ "loss": 0.0501,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 0.69,
2239
+ "learning_rate": 5.053128494627578e-06,
2240
+ "loss": 0.0803,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 0.69,
2245
+ "learning_rate": 5.000000000000003e-06,
2246
+ "loss": 0.2073,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 0.69,
2251
+ "learning_rate": 4.947059019356904e-06,
2252
+ "loss": 0.0479,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 0.69,
2257
+ "learning_rate": 4.89430753813313e-06,
2258
+ "loss": 0.125,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 0.7,
2263
+ "learning_rate": 4.8417475346567635e-06,
2264
+ "loss": 0.0715,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 0.7,
2269
+ "learning_rate": 4.78938098007494e-06,
2270
+ "loss": 0.0242,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 0.7,
2275
+ "learning_rate": 4.737209838279923e-06,
2276
+ "loss": 0.1242,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 0.7,
2281
+ "learning_rate": 4.685236065835443e-06,
2282
+ "loss": 0.1771,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 0.7,
2287
+ "learning_rate": 4.633461611903336e-06,
2288
+ "loss": 0.1037,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 0.7,
2293
+ "learning_rate": 4.581888418170429e-06,
2294
+ "loss": 0.0733,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 0.71,
2299
+ "learning_rate": 4.530518418775734e-06,
2300
+ "loss": 0.0565,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 0.71,
2305
+ "learning_rate": 4.479353540237903e-06,
2306
+ "loss": 0.1092,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 0.71,
2311
+ "learning_rate": 4.4283957013829845e-06,
2312
+ "loss": 0.0371,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 0.71,
2317
+ "learning_rate": 4.3776468132724605e-06,
2318
+ "loss": 0.1105,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 0.71,
2323
+ "learning_rate": 4.327108779131573e-06,
2324
+ "loss": 0.1856,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 0.72,
2329
+ "learning_rate": 4.276783494277954e-06,
2330
+ "loss": 0.1237,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 0.72,
2335
+ "learning_rate": 4.226672846050538e-06,
2336
+ "loss": 0.2521,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 0.72,
2341
+ "learning_rate": 4.176778713738787e-06,
2342
+ "loss": 0.0565,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 0.72,
2347
+ "learning_rate": 4.127102968512214e-06,
2348
+ "loss": 0.0518,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 0.72,
2353
+ "learning_rate": 4.077647473350201e-06,
2354
+ "loss": 0.0735,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 0.72,
2359
+ "learning_rate": 4.028414082972141e-06,
2360
+ "loss": 0.0786,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 0.73,
2365
+ "learning_rate": 3.9794046437678705e-06,
2366
+ "loss": 0.025,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 0.73,
2371
+ "learning_rate": 3.930620993728434e-06,
2372
+ "loss": 0.2235,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 0.73,
2377
+ "learning_rate": 3.882064962377154e-06,
2378
+ "loss": 0.1307,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 0.73,
2383
+ "learning_rate": 3.83373837070101e-06,
2384
+ "loss": 0.0224,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 0.73,
2389
+ "learning_rate": 3.7856430310823546e-06,
2390
+ "loss": 0.1109,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 0.74,
2395
+ "learning_rate": 3.737780747230941e-06,
2396
+ "loss": 0.0624,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 0.74,
2401
+ "learning_rate": 3.6901533141162804e-06,
2402
+ "loss": 0.055,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 0.74,
2407
+ "learning_rate": 3.6427625179003223e-06,
2408
+ "loss": 0.2079,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 0.74,
2413
+ "learning_rate": 3.595610135870472e-06,
2414
+ "loss": 0.2215,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 0.74,
2419
+ "learning_rate": 3.548697936372937e-06,
2420
+ "loss": 0.1016,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 0.74,
2425
+ "learning_rate": 3.5020276787464058e-06,
2426
+ "loss": 0.1229,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 0.75,
2431
+ "learning_rate": 3.455601113256073e-06,
2432
+ "loss": 0.0759,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 0.75,
2437
+ "learning_rate": 3.4094199810279926e-06,
2438
+ "loss": 0.1667,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 0.75,
2443
+ "learning_rate": 3.3634860139837877e-06,
2444
+ "loss": 0.048,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 0.75,
2449
+ "learning_rate": 3.317800934775696e-06,
2450
+ "loss": 0.0543,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 0.75,
2455
+ "learning_rate": 3.2723664567219627e-06,
2456
+ "loss": 0.1656,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 0.76,
2461
+ "learning_rate": 3.2271842837425917e-06,
2462
+ "loss": 0.0409,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 0.76,
2467
+ "learning_rate": 3.1822561102954373e-06,
2468
+ "loss": 0.1173,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 0.76,
2473
+ "learning_rate": 3.1375836213126653e-06,
2474
+ "loss": 0.0964,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 0.76,
2479
+ "learning_rate": 3.0931684921375572e-06,
2480
+ "loss": 0.0432,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 0.76,
2485
+ "learning_rate": 3.0490123884616795e-06,
2486
+ "loss": 0.1451,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 0.77,
2491
+ "learning_rate": 3.0051169662624224e-06,
2492
+ "loss": 0.1226,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 0.77,
2497
+ "learning_rate": 2.9614838717408866e-06,
2498
+ "loss": 0.096,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 0.77,
2503
+ "learning_rate": 2.918114741260156e-06,
2504
+ "loss": 0.1152,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 0.77,
2509
+ "learning_rate": 2.8750112012839215e-06,
2510
+ "loss": 0.0575,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 0.77,
2515
+ "learning_rate": 2.8321748683154893e-06,
2516
+ "loss": 0.097,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 0.77,
2521
+ "learning_rate": 2.7896073488371535e-06,
2522
+ "loss": 0.0513,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 0.78,
2527
+ "learning_rate": 2.7473102392499517e-06,
2528
+ "loss": 0.0566,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 0.78,
2533
+ "learning_rate": 2.7052851258137936e-06,
2534
+ "loss": 0.0193,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 0.78,
2539
+ "learning_rate": 2.663533584587974e-06,
2540
+ "loss": 0.1507,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 0.78,
2545
+ "learning_rate": 2.622057181372063e-06,
2546
+ "loss": 0.0208,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 0.78,
2551
+ "learning_rate": 2.580857471647186e-06,
2552
+ "loss": 0.0893,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 0.79,
2557
+ "learning_rate": 2.539936000517689e-06,
2558
+ "loss": 0.0988,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 0.79,
2563
+ "learning_rate": 2.4992943026531935e-06,
2564
+ "loss": 0.0368,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 0.79,
2569
+ "learning_rate": 2.4589339022310386e-06,
2570
+ "loss": 0.0911,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 0.79,
2575
+ "learning_rate": 2.4188563128791255e-06,
2576
+ "loss": 0.1093,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 0.79,
2581
+ "learning_rate": 2.379063037619146e-06,
2582
+ "loss": 0.0717,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 0.79,
2587
+ "learning_rate": 2.339555568810221e-06,
2588
+ "loss": 0.1486,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 0.8,
2593
+ "learning_rate": 2.300335388092929e-06,
2594
+ "loss": 0.1174,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 0.8,
2599
+ "learning_rate": 2.261403966333742e-06,
2600
+ "loss": 0.2022,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 0.8,
2605
+ "learning_rate": 2.2227627635698624e-06,
2606
+ "loss": 0.0376,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 0.8,
2611
+ "learning_rate": 2.1844132289544684e-06,
2612
+ "loss": 0.3022,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 0.8,
2617
+ "learning_rate": 2.1463568007023706e-06,
2618
+ "loss": 0.0121,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 0.81,
2623
+ "learning_rate": 2.1085949060360654e-06,
2624
+ "loss": 0.1441,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 0.81,
2629
+ "learning_rate": 2.0711289611322204e-06,
2630
+ "loss": 0.0457,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 0.81,
2635
+ "learning_rate": 2.0339603710685574e-06,
2636
+ "loss": 0.0324,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 0.81,
2641
+ "learning_rate": 1.9970905297711606e-06,
2642
+ "loss": 0.045,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 0.81,
2647
+ "learning_rate": 1.9605208199621993e-06,
2648
+ "loss": 0.0644,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 0.82,
2653
+ "learning_rate": 1.924252613108073e-06,
2654
+ "loss": 0.0743,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 0.82,
2659
+ "learning_rate": 1.8882872693679787e-06,
2660
+ "loss": 0.054,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 0.82,
2665
+ "learning_rate": 1.8526261375428955e-06,
2666
+ "loss": 0.1679,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 0.82,
2671
+ "learning_rate": 1.8172705550250093e-06,
2672
+ "loss": 0.0666,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 0.82,
2677
+ "learning_rate": 1.7822218477475496e-06,
2678
+ "loss": 0.2,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 0.82,
2683
+ "learning_rate": 1.7474813301350668e-06,
2684
+ "loss": 0.1191,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 0.83,
2689
+ "learning_rate": 1.7130503050541368e-06,
2690
+ "loss": 0.1166,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 0.83,
2695
+ "learning_rate": 1.6789300637645e-06,
2696
+ "loss": 0.0089,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 0.83,
2701
+ "learning_rate": 1.6451218858706374e-06,
2702
+ "loss": 0.0848,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 0.83,
2707
+ "learning_rate": 1.6116270392737753e-06,
2708
+ "loss": 0.1263,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 0.83,
2713
+ "learning_rate": 1.578446780124344e-06,
2714
+ "loss": 0.1338,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 0.84,
2719
+ "learning_rate": 1.5455823527748626e-06,
2720
+ "loss": 0.0566,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 0.84,
2725
+ "learning_rate": 1.5130349897332764e-06,
2726
+ "loss": 0.0618,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 0.84,
2731
+ "learning_rate": 1.4808059116167306e-06,
2732
+ "loss": 0.0259,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 0.84,
2737
+ "learning_rate": 1.4488963271057943e-06,
2738
+ "loss": 0.1682,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 0.84,
2743
+ "learning_rate": 1.4173074328991376e-06,
2744
+ "loss": 0.0967,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 0.84,
2749
+ "learning_rate": 1.3860404136686411e-06,
2750
+ "loss": 0.0799,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 0.85,
2755
+ "learning_rate": 1.355096442014977e-06,
2756
+ "loss": 0.1426,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 0.85,
2761
+ "learning_rate": 1.3244766784236307e-06,
2762
+ "loss": 0.1401,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 0.85,
2767
+ "learning_rate": 1.294182271221377e-06,
2768
+ "loss": 0.0526,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 0.85,
2773
+ "learning_rate": 1.2642143565332154e-06,
2774
+ "loss": 0.1516,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 0.85,
2779
+ "learning_rate": 1.2345740582397647e-06,
2780
+ "loss": 0.0326,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 0.86,
2785
+ "learning_rate": 1.2052624879351105e-06,
2786
+ "loss": 0.0517,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 0.86,
2791
+ "learning_rate": 1.176280744885121e-06,
2792
+ "loss": 0.094,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 0.86,
2797
+ "learning_rate": 1.1476299159862204e-06,
2798
+ "loss": 0.0684,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 0.86,
2803
+ "learning_rate": 1.1193110757246251e-06,
2804
+ "loss": 0.0845,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 0.86,
2809
+ "learning_rate": 1.09132528613605e-06,
2810
+ "loss": 0.1105,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 0.87,
2815
+ "learning_rate": 1.0636735967658785e-06,
2816
+ "loss": 0.0947,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 0.87,
2821
+ "learning_rate": 1.0363570446297999e-06,
2822
+ "loss": 0.0685,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 0.87,
2827
+ "learning_rate": 1.0093766541749206e-06,
2828
+ "loss": 0.0902,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 0.87,
2833
+ "learning_rate": 9.827334372413444e-07,
2834
+ "loss": 0.0257,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 0.87,
2839
+ "learning_rate": 9.564283930242258e-07,
2840
+ "loss": 0.1048,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 0.87,
2845
+ "learning_rate": 9.304625080362939e-07,
2846
+ "loss": 0.1365,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 0.88,
2851
+ "learning_rate": 9.048367560708604e-07,
2852
+ "loss": 0.2323,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 0.88,
2857
+ "learning_rate": 8.79552098165296e-07,
2858
+ "loss": 0.0435,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 0.88,
2863
+ "learning_rate": 8.546094825649909e-07,
2864
+ "loss": 0.0644,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 0.88,
2869
+ "learning_rate": 8.300098446877925e-07,
2870
+ "loss": 0.0884,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 0.88,
2875
+ "learning_rate": 8.057541070889229e-07,
2876
+ "loss": 0.1381,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 0.89,
2881
+ "learning_rate": 7.818431794263837e-07,
2882
+ "loss": 0.0472,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 0.89,
2887
+ "learning_rate": 7.582779584268374e-07,
2888
+ "loss": 0.0606,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 0.89,
2893
+ "learning_rate": 7.350593278519824e-07,
2894
+ "loss": 0.0325,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 0.89,
2899
+ "learning_rate": 7.121881584654056e-07,
2900
+ "loss": 0.0391,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 0.89,
2905
+ "learning_rate": 6.896653079999249e-07,
2906
+ "loss": 0.0965,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 0.89,
2911
+ "learning_rate": 6.67491621125429e-07,
2912
+ "loss": 0.0288,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 0.9,
2917
+ "learning_rate": 6.45667929417193e-07,
2918
+ "loss": 0.0608,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 0.9,
2923
+ "learning_rate": 6.241950513246931e-07,
2924
+ "loss": 0.0619,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 0.9,
2929
+ "learning_rate": 6.030737921409169e-07,
2930
+ "loss": 0.2691,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 0.9,
2935
+ "learning_rate": 5.823049439721562e-07,
2936
+ "loss": 0.1071,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 0.9,
2941
+ "learning_rate": 5.618892857083069e-07,
2942
+ "loss": 0.1501,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 0.91,
2947
+ "learning_rate": 5.418275829936537e-07,
2948
+ "loss": 0.0807,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 0.91,
2953
+ "learning_rate": 5.221205881981594e-07,
2954
+ "loss": 0.0666,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 0.91,
2959
+ "learning_rate": 5.027690403892461e-07,
2960
+ "loss": 0.0993,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 0.91,
2965
+ "learning_rate": 4.837736653040825e-07,
2966
+ "loss": 0.2467,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 0.91,
2971
+ "learning_rate": 4.6513517532236096e-07,
2972
+ "loss": 0.0563,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 0.91,
2977
+ "learning_rate": 4.468542694395861e-07,
2978
+ "loss": 0.0792,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 0.92,
2983
+ "learning_rate": 4.2893163324085886e-07,
2984
+ "loss": 0.0648,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 0.92,
2989
+ "learning_rate": 4.113679388751635e-07,
2990
+ "loss": 0.3011,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 0.92,
2995
+ "learning_rate": 3.941638450301644e-07,
2996
+ "loss": 0.221,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 0.92,
3001
+ "learning_rate": 3.773199969074959e-07,
3002
+ "loss": 0.0961,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 0.92,
3007
+ "learning_rate": 3.608370261985761e-07,
3008
+ "loss": 0.0816,
3009
+ "step": 500
3010
+ },
3011
+ {
3012
+ "epoch": 0.93,
3013
+ "learning_rate": 3.4471555106090573e-07,
3014
+ "loss": 0.0565,
3015
+ "step": 501
3016
+ },
3017
+ {
3018
+ "epoch": 0.93,
3019
+ "learning_rate": 3.2895617609489337e-07,
3020
+ "loss": 0.0703,
3021
+ "step": 502
3022
+ },
3023
+ {
3024
+ "epoch": 0.93,
3025
+ "learning_rate": 3.135594923211771e-07,
3026
+ "loss": 0.0622,
3027
+ "step": 503
3028
+ },
3029
+ {
3030
+ "epoch": 0.93,
3031
+ "learning_rate": 2.9852607715846194e-07,
3032
+ "loss": 0.1138,
3033
+ "step": 504
3034
+ },
3035
+ {
3036
+ "epoch": 0.93,
3037
+ "learning_rate": 2.838564944018618e-07,
3038
+ "loss": 0.2741,
3039
+ "step": 505
3040
+ },
3041
+ {
3042
+ "epoch": 0.94,
3043
+ "learning_rate": 2.6955129420176193e-07,
3044
+ "loss": 0.06,
3045
+ "step": 506
3046
+ },
3047
+ {
3048
+ "epoch": 0.94,
3049
+ "learning_rate": 2.556110130431788e-07,
3050
+ "loss": 0.0322,
3051
+ "step": 507
3052
+ },
3053
+ {
3054
+ "epoch": 0.94,
3055
+ "learning_rate": 2.420361737256438e-07,
3056
+ "loss": 0.1867,
3057
+ "step": 508
3058
+ },
3059
+ {
3060
+ "epoch": 0.94,
3061
+ "learning_rate": 2.2882728534360131e-07,
3062
+ "loss": 0.2815,
3063
+ "step": 509
3064
+ },
3065
+ {
3066
+ "epoch": 0.94,
3067
+ "learning_rate": 2.159848432673084e-07,
3068
+ "loss": 0.133,
3069
+ "step": 510
3070
+ },
3071
+ {
3072
+ "epoch": 0.94,
3073
+ "learning_rate": 2.035093291242607e-07,
3074
+ "loss": 0.134,
3075
+ "step": 511
3076
+ },
3077
+ {
3078
+ "epoch": 0.95,
3079
+ "learning_rate": 1.914012107811336e-07,
3080
+ "loss": 0.1156,
3081
+ "step": 512
3082
+ },
3083
+ {
3084
+ "epoch": 0.95,
3085
+ "learning_rate": 1.7966094232622856e-07,
3086
+ "loss": 0.3407,
3087
+ "step": 513
3088
+ },
3089
+ {
3090
+ "epoch": 0.95,
3091
+ "learning_rate": 1.6828896405244988e-07,
3092
+ "loss": 0.0641,
3093
+ "step": 514
3094
+ },
3095
+ {
3096
+ "epoch": 0.95,
3097
+ "learning_rate": 1.572857024407881e-07,
3098
+ "loss": 0.0459,
3099
+ "step": 515
3100
+ },
3101
+ {
3102
+ "epoch": 0.95,
3103
+ "learning_rate": 1.466515701443294e-07,
3104
+ "loss": 0.1403,
3105
+ "step": 516
3106
+ },
3107
+ {
3108
+ "epoch": 0.96,
3109
+ "learning_rate": 1.3638696597277678e-07,
3110
+ "loss": 0.0836,
3111
+ "step": 517
3112
+ },
3113
+ {
3114
+ "epoch": 0.96,
3115
+ "learning_rate": 1.264922748774955e-07,
3116
+ "loss": 0.1507,
3117
+ "step": 518
3118
+ },
3119
+ {
3120
+ "epoch": 0.96,
3121
+ "learning_rate": 1.1696786793707782e-07,
3122
+ "loss": 0.1091,
3123
+ "step": 519
3124
+ },
3125
+ {
3126
+ "epoch": 0.96,
3127
+ "learning_rate": 1.0781410234342093e-07,
3128
+ "loss": 0.0432,
3129
+ "step": 520
3130
+ },
3131
+ {
3132
+ "epoch": 0.96,
3133
+ "learning_rate": 9.90313213883376e-08,
3134
+ "loss": 0.0166,
3135
+ "step": 521
3136
+ },
3137
+ {
3138
+ "epoch": 0.96,
3139
+ "learning_rate": 9.061985445067756e-08,
3140
+ "loss": 0.1675,
3141
+ "step": 522
3142
+ },
3143
+ {
3144
+ "epoch": 0.97,
3145
+ "learning_rate": 8.258001698397744e-08,
3146
+ "loss": 0.0462,
3147
+ "step": 523
3148
+ },
3149
+ {
3150
+ "epoch": 0.97,
3151
+ "learning_rate": 7.491211050462798e-08,
3152
+ "loss": 0.0219,
3153
+ "step": 524
3154
+ },
3155
+ {
3156
+ "epoch": 0.97,
3157
+ "learning_rate": 6.761642258056977e-08,
3158
+ "loss": 0.1261,
3159
+ "step": 525
3160
+ },
3161
+ {
3162
+ "epoch": 0.97,
3163
+ "learning_rate": 6.069322682050516e-08,
3164
+ "loss": 0.1249,
3165
+ "step": 526
3166
+ },
3167
+ {
3168
+ "epoch": 0.97,
3169
+ "learning_rate": 5.414278286363761e-08,
3170
+ "loss": 0.0674,
3171
+ "step": 527
3172
+ },
3173
+ {
3174
+ "epoch": 0.98,
3175
+ "learning_rate": 4.796533636993728e-08,
3176
+ "loss": 0.0171,
3177
+ "step": 528
3178
+ },
3179
+ {
3180
+ "epoch": 0.98,
3181
+ "learning_rate": 4.216111901092501e-08,
3182
+ "loss": 0.0653,
3183
+ "step": 529
3184
+ },
3185
+ {
3186
+ "epoch": 0.98,
3187
+ "learning_rate": 3.6730348460986e-08,
3188
+ "loss": 0.0292,
3189
+ "step": 530
3190
+ },
3191
+ {
3192
+ "epoch": 0.98,
3193
+ "learning_rate": 3.167322838920406e-08,
3194
+ "loss": 0.1442,
3195
+ "step": 531
3196
+ },
3197
+ {
3198
+ "epoch": 0.98,
3199
+ "learning_rate": 2.6989948451726643e-08,
3200
+ "loss": 0.0773,
3201
+ "step": 532
3202
+ },
3203
+ {
3204
+ "epoch": 0.99,
3205
+ "learning_rate": 2.2680684284650532e-08,
3206
+ "loss": 0.0428,
3207
+ "step": 533
3208
+ },
3209
+ {
3210
+ "epoch": 0.99,
3211
+ "learning_rate": 1.8745597497433765e-08,
3212
+ "loss": 0.2392,
3213
+ "step": 534
3214
+ },
3215
+ {
3216
+ "epoch": 0.99,
3217
+ "learning_rate": 1.518483566683826e-08,
3218
+ "loss": 0.1413,
3219
+ "step": 535
3220
+ },
3221
+ {
3222
+ "epoch": 0.99,
3223
+ "learning_rate": 1.1998532331389812e-08,
3224
+ "loss": 0.0554,
3225
+ "step": 536
3226
+ },
3227
+ {
3228
+ "epoch": 0.99,
3229
+ "learning_rate": 9.186806986376528e-09,
3230
+ "loss": 0.1174,
3231
+ "step": 537
3232
+ },
3233
+ {
3234
+ "epoch": 0.99,
3235
+ "learning_rate": 6.749765079363535e-09,
3236
+ "loss": 0.048,
3237
+ "step": 538
3238
+ },
3239
+ {
3240
+ "epoch": 1.0,
3241
+ "learning_rate": 4.687498006236135e-09,
3242
+ "loss": 0.1818,
3243
+ "step": 539
3244
+ },
3245
+ {
3246
+ "epoch": 1.0,
3247
+ "learning_rate": 3.0000831077803273e-09,
3248
+ "loss": 0.083,
3249
+ "step": 540
3250
+ },
3251
+ {
3252
+ "epoch": 1.0,
3253
+ "learning_rate": 1.6875836667729073e-09,
3254
+ "loss": 0.0186,
3255
+ "step": 541
3256
+ },
3257
+ {
3258
+ "epoch": 1.0,
3259
+ "step": 541,
3260
+ "total_flos": 1291092221952.0,
3261
+ "train_loss": 0.14259492732281495,
3262
+ "train_runtime": 4024.6248,
3263
+ "train_samples_per_second": 1.342,
3264
+ "train_steps_per_second": 0.134
3265
+ }
3266
+ ],
3267
+ "logging_steps": 1.0,
3268
+ "max_steps": 541,
3269
+ "num_input_tokens_seen": 0,
3270
+ "num_train_epochs": 1,
3271
+ "save_steps": 500,
3272
+ "total_flos": 1291092221952.0,
3273
+ "train_batch_size": 10,
3274
+ "trial_name": null,
3275
+ "trial_params": null
3276
+ }
CheckGuard Models/wholeimage/check_no/finetune_lora_llava_mistral.sh ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # Use first parameter as GPU IDs, default to "0,1,2,3" if not provided
3
+ GPU_IDS=${1:-0,1,2,3}
4
+
5
+
6
+ CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29604\
7
+ llava/train/train_mem.py \
8
+ --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
9
+ --deepspeed ./scripts/zero3.json \
10
+ --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \
11
+ --version mistral_instruct \
12
+ --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/check_no/check_no_dataset.json \
13
+ --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \
14
+ --vision_tower openai/clip-vit-large-patch14-336 \
15
+ --mm_projector_type mlp2x_gelu \
16
+ --mm_vision_select_layer -2 \
17
+ --mm_use_im_start_end False \
18
+ --mm_use_im_patch_token False \
19
+ --mm_patch_merge_type spatial_unpad \
20
+ --image_aspect_ratio anyres \
21
+ --group_by_modality_length False \
22
+ --bf16 False \
23
+ --fp16 True \
24
+ --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model \
25
+ --num_train_epochs 1 \
26
+ --per_device_train_batch_size 10 \
27
+ --per_device_eval_batch_size 1 \
28
+ --gradient_accumulation_steps 1 \
29
+ --evaluation_strategy "no" \
30
+ --save_strategy "steps" \
31
+ --save_steps 500 \
32
+ --save_total_limit 5 \
33
+ --learning_rate 2e-5 \
34
+ --weight_decay 0. \
35
+ --warmup_ratio 0.05 \
36
+ --lr_scheduler_type "cosine" \
37
+ --logging_steps 1 \
38
+ --tf32 True \
39
+ --model_max_length 4096 \
40
+ --gradient_checkpointing True \
41
+ --dataloader_num_workers 4 \
42
+ --lazy_preprocess True \
43
+ --report_to wandb \