laxsvips's picture
Update README.md
ced2f56
metadata
license: mit
tags:
  - generated_from_keras_callback
model-index:
  - name: laxsvips/minilm-finetuned-emotion
    results: []
datasets:
  - emotion
language:
  - en
metrics:
  - f1

laxsvips/minilm-finetuned-emotion

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the Hugging Face emotion (https://huggingface.co/datasets/emotion) dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1168
  • Train Accuracy: 0.9446
  • Validation Loss: 0.1709
  • Validation Accuracy: 0.9350
  • Epoch: 4

Model description

MiniLM: Small and Fast Pre-trained Models for Language Understanding and Generation

MiniLM is a distilled model from the paper "MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers".

Intended uses & limitations

This model has been created as a learning guide on:

  • How to implement a text classification model using Hugging Face Transformers in TensorFlow
  • How to handle imbalanced class distribution

How to use the model

from transformers import pipeline

model_cpt = "laxsvips/minilm-finetuned-emotion"
pipe = pipeline("text-classification", model=model_cpt)
predicted_scores = pipe("I am so glad you could help me")
print(predicted_scores)

The results:

[[{'label': 'sadness', 'score': 0.003758953418582678},
  {'label': 'joy', 'score': 0.9874302744865417},
  {'label': 'love', 'score': 0.00610917154699564},
  {'label': 'anger', 'score': 9.696640336187556e-05},
  {'label': 'fear', 'score': 0.0006420552381314337},
  {'label': 'surprise', 'score': 0.00196251692250371}]]

Training and evaluation data

Emotion

Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise.

Training procedure

Refer to the Colab notebook

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: 'Adam',
  • learning_rate': 5e-05,
  • batch_size : 64
  • num_epochs - 5

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.9485 0.5543 0.8404 0.6870 0
0.4192 0.8347 0.3450 0.9040 1
0.2132 0.9178 0.2288 0.9240 2
0.1465 0.9364 0.1838 0.9295 3
0.1168 0.9446 0.1709 0.9350 4

Evaluation Metrics

{'accuracy': 0.935,
 'precision': 0.937365614416424,
 'recall': 0.935,
 'f1_score': 0.9355424419858925}

Framework versions

  • Transformers 4.26.1
  • TensorFlow 2.11.0
  • Datasets 2.9.0
  • Tokenizers 0.13.2

References

  1. https://www.youtube.com/watch?v=u--UVvH-LIQ
  2. https://huggingface.co/docs/transformers
  3. https://www.tensorflow.org/api_docs/python/tf