|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cne-layoutlmv3-data |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cne_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cne-layoutlmv3-data |
|
type: cne-layoutlmv3-data |
|
config: cne-dataset |
|
split: test |
|
args: cne-dataset |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9950738916256158 |
|
- name: Recall |
|
type: recall |
|
value: 0.9950738916256158 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9950738916256159 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9992716678805535 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cne_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cne-layoutlmv3-data dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0008 |
|
- Precision: 0.9951 |
|
- Recall: 0.9951 |
|
- F1: 0.9951 |
|
- Accuracy: 0.9993 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 3 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 7.81 | 250 | 0.0028 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.0229 | 15.62 | 500 | 0.0015 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.0229 | 23.44 | 750 | 0.0011 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.0031 | 31.25 | 1000 | 0.0009 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.0031 | 39.06 | 1250 | 0.0009 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.0019 | 46.88 | 1500 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.0019 | 54.69 | 1750 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.0014 | 62.5 | 2000 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.0014 | 70.31 | 2250 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
| 0.001 | 78.12 | 2500 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|