lcw99's picture
Update README.md
560ed27
|
raw
history blame
2.74 kB
metadata
tags:
  - generated_from_keras_callback
model-index:
  - name: t5-large-korean-text-summary
    results: []

t5-large-korean-text-summary

This model is a fine-tuning of paust/pko-t5-large model using AIHUB "summary and report generation data". This model provides a short summary of long sentences in Korean.

이 λͺ¨λΈμ€ paust/pko-t5-large model을 AIHUB "μš”μ•½λ¬Έ 및 레포트 생성 데이터"λ₯Ό μ΄μš©ν•˜μ—¬ fine tunning ν•œ κ²ƒμž…λ‹ˆλ‹€. 이 λͺ¨λΈμ€ ν•œκΈ€λ‘œλœ μž₯문을 짧게 μš”μ•½ν•΄ μ€λ‹ˆλ‹€.

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import nltk
nltk.download('punkt')

model_dir = "lcw99/t5-large-korean-text-summary"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)

max_input_length = 512 + 256

text = """
주인곡 강인ꡬ(ν•˜μ •μš°)λŠ” β€˜μˆ˜λ¦¬λ‚¨μ—μ„œ 홍어가 많이 λ‚˜λŠ”λ° λ‹€ κ°–λ‹€λ²„λ¦°λ‹€β€™λŠ” 친ꡬ 
λ°•μ‘μˆ˜(ν˜„λ΄‰μ‹)의 μ–˜κΈ°λ₯Ό λ“£κ³  μˆ˜λ¦¬λ‚¨μ‚° 홍어λ₯Ό ν•œκ΅­μ— μˆ˜μΆœν•˜κΈ° μœ„ν•΄ μˆ˜λ¦¬λ‚¨μœΌλ‘œ κ°„λ‹€. 
κ΅­λ¦½μˆ˜μ‚°κ³Όν•™μ› 츑은 β€œμ‹€μ œλ‘œ λ‚¨λŒ€μ„œμ–‘μ— 홍어가 많이 μ‚΄κ³  μ•„λ₯΄ν—¨ν‹°λ‚˜λ₯Ό λΉ„λ‘―ν•œ 남미 κ΅­κ°€μ—μ„œ 홍어가 많이 μž‘νžŒλ‹€β€λ©° 
β€œμˆ˜λ¦¬λ‚¨ μ—°μ•ˆμ—λ„ 홍어가 많이 μ„œμ‹ν•  것”이라고 μ„€λͺ…ν–ˆλ‹€.

κ·ΈλŸ¬λ‚˜ 관세청에 λ”°λ₯΄λ©΄ ν•œκ΅­μ— μˆ˜λ¦¬λ‚¨μ‚° 홍어가 μˆ˜μž…λœ 적은 μ—†λ‹€. 
일각에선 β€œλˆμ„ 벌기 μœ„ν•΄ μˆ˜λ¦¬λ‚¨μ‚° 홍어λ₯Ό κ΅¬ν•˜λŸ¬ κ°„ 섀정은 κ°œμ—°μ„±μ΄ λ–¨μ–΄μ§„λ‹€β€λŠ” 지적도 ν•œλ‹€. 
λ“œλΌλ§ˆ 배경이 된 2008~2010λ…„μ—λŠ” 이미 ꡭ내에 μ•„λ₯΄ν—¨ν‹°λ‚˜, 칠레, λ―Έκ΅­ λ“± 아메리카산 홍어가 μˆ˜μž…λ˜κ³  μžˆμ—ˆκΈ° λ•Œλ¬Έμ΄λ‹€. 
μ‹€μ œ 쑰봉행 체포 μž‘μ „μ— ν˜‘μ‘°ν–ˆλ˜ β€˜ν˜‘λ ₯자 K씨’도 홍어 사업이 μ•„λ‹ˆλΌ μˆ˜λ¦¬λ‚¨μ— μ„ λ°•μš© νŠΉμˆ˜μš©μ ‘λ΄‰μ„ νŒŒλŠ” 사업을 ν•˜λŸ¬ μˆ˜λ¦¬λ‚¨μ— κ°”μ—ˆλ‹€.
"""

inputs = ["summarize: " + text]

inputs = tokenizer(inputs, max_length=max_input_length, truncation=True, return_tensors="pt")
output = model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=100)
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
predicted_title = nltk.sent_tokenize(decoded_output.strip())[0]

print(predicted_title)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: None
  • training_precision: float16

Training results

Framework versions

  • Transformers 4.22.1
  • TensorFlow 2.10.0
  • Datasets 2.5.1
  • Tokenizers 0.12.1