text_shortening_model_v34

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7697
  • Rouge1: 0.4731
  • Rouge2: 0.253
  • Rougel: 0.4166
  • Rougelsum: 0.416
  • Bert precision: 0.8697
  • Bert recall: 0.8697
  • Average word count: 8.7087
  • Max word count: 17
  • Min word count: 5
  • Average token count: 16.3093
  • % shortened texts with length > 12: 6.6066

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.4675 1.0 19 3.1777 0.4029 0.1769 0.3503 0.3498 0.8509 0.857 9.6577 17 5 15.4324 10.2102
1.1669 2.0 38 1.9224 0.4506 0.2396 0.4184 0.4181 0.864 0.8688 8.6306 15 5 14.2613 4.2042
0.9292 3.0 57 1.7461 0.4654 0.2556 0.4186 0.419 0.8654 0.8722 9.0751 17 5 14.9099 4.2042
0.7876 4.0 76 1.9057 0.4003 0.207 0.367 0.366 0.8539 0.8516 8.1021 13 5 16.2883 1.2012
0.5976 5.0 95 1.7603 0.4776 0.2636 0.4254 0.4248 0.8659 0.8754 9.1952 16 5 15.0961 6.006
0.469 6.0 114 2.1107 0.4675 0.2542 0.4077 0.4081 0.856 0.8776 11.1802 20 5 18.4505 31.5315
0.4291 7.0 133 1.7980 0.4701 0.2509 0.4202 0.4195 0.8647 0.8723 9.1832 15 5 14.7267 6.3063
0.3673 8.0 152 1.9170 0.4669 0.2574 0.4188 0.4187 0.8678 0.8698 8.6306 18 5 14.3093 3.9039
0.3432 9.0 171 2.0268 0.4804 0.2691 0.4254 0.4249 0.8682 0.8753 9.2402 18 5 14.6847 9.3093
0.3094 10.0 190 2.1107 0.4809 0.2724 0.4353 0.4337 0.8689 0.8739 9.2883 17 4 16.2162 9.009
0.4402 11.0 209 2.2507 0.4816 0.268 0.428 0.4278 0.8668 0.8743 9.4805 18 4 16.6126 10.8108
0.3691 12.0 228 2.1652 0.4784 0.2637 0.4286 0.4277 0.8683 0.8714 8.7988 15 5 14.5105 6.006
0.1853 13.0 247 2.3660 0.4705 0.259 0.4119 0.4115 0.8686 0.8695 8.7898 17 5 16.2432 6.6066
0.3186 14.0 266 2.3237 0.4817 0.27 0.4273 0.4271 0.8698 0.8738 8.973 17 5 16.5976 9.3093
0.1745 15.0 285 2.2675 0.4672 0.2577 0.4177 0.4165 0.8698 0.8694 8.6066 16 5 14.7117 3.9039
0.1304 16.0 304 2.5157 0.4726 0.253 0.418 0.4167 0.8691 0.8688 8.6517 17 4 15.8468 3.9039
0.1432 17.0 323 2.4798 0.4744 0.2614 0.4204 0.4196 0.869 0.8725 8.9189 17 5 15.5015 6.006
0.1116 18.0 342 2.5924 0.4772 0.2589 0.4222 0.4221 0.87 0.8717 8.7508 17 5 15.6096 6.9069
0.0921 19.0 361 2.6547 0.4733 0.2541 0.4205 0.4199 0.8694 0.8694 8.6787 16 5 15.4204 6.006
0.0679 20.0 380 2.7697 0.4731 0.253 0.4166 0.416 0.8697 0.8697 8.7087 17 5 16.3093 6.6066

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v34

Finetuned
(50)
this model