text_shortening_model_v35

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1783
  • Rouge1: 0.4993
  • Rouge2: 0.2724
  • Rougel: 0.4472
  • Rougelsum: 0.4467
  • Bert precision: 0.8744
  • Bert recall: 0.8769
  • Average word count: 8.6096
  • Max word count: 20
  • Min word count: 5
  • Average token count: 14.97
  • % shortened texts with length > 12: 3.6036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.83 1.0 37 1.9642 0.457 0.2329 0.4049 0.4054 0.8677 0.8663 8.027 13 4 16.6607 2.7027
0.8629 2.0 74 1.6943 0.5268 0.3019 0.4695 0.4697 0.8758 0.8901 10.0571 19 5 17.8258 19.2192
0.7849 3.0 111 1.6564 0.5001 0.279 0.4553 0.4554 0.873 0.8805 8.9099 17 5 15.4865 5.1051
0.6116 4.0 148 1.7559 0.4638 0.2376 0.4183 0.4188 0.863 0.8665 8.4414 15 4 13.8829 0.9009
0.3976 5.0 185 1.6708 0.4999 0.2723 0.4481 0.4481 0.8744 0.8766 8.5556 16 5 14.6877 3.9039
0.2977 6.0 222 1.7196 0.4937 0.2699 0.4376 0.4379 0.8684 0.877 9.1652 20 5 15.3964 5.7057
0.2187 7.0 259 1.7942 0.5129 0.2905 0.4572 0.4575 0.8765 0.8803 8.7117 19 5 14.6306 3.9039
0.1603 8.0 296 1.8003 0.4822 0.2538 0.4237 0.4229 0.8688 0.8722 8.6306 19 5 15.4474 5.7057
0.1175 9.0 333 2.0138 0.5024 0.2798 0.4486 0.4475 0.8742 0.8791 8.7988 19 5 16.1471 6.6066
0.0859 10.0 370 2.1783 0.4993 0.2724 0.4472 0.4467 0.8744 0.8769 8.6096 20 5 14.97 3.6036

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v35

Finetuned
(50)
this model