import argparse | |
from numpy import load, ndarray | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-f", "--filepath", required=True, help="Specify the file path to the agent.", type=str) | |
args = parser.parse_args() | |
filepath = args.filepath | |
npdata = load(filepath) | |
print(type(npdata['results'])) | |
evaluations = ndarray.tolist(npdata['results']) | |
print(type(evaluations)) | |
print(len(evaluations)) | |
# print(evaluations) | |
sorted_evals = [] | |
for eval in evaluations: | |
sorted_evals.append(sorted(eval)) | |
# Now I have a sorted list. | |
# Now just pop the first and last elements of each eval | |
for eval in sorted_evals: | |
eval.pop(0) | |
eval.pop() | |
print() | |
# print(sorted_evals) | |
# Now that I have my sorted evaluations, I can calculate the mean episode reward for each eval | |
mean_eval_rewards = [] | |
for eval in sorted_evals: | |
mean_eval_rewards.append(sum(eval) / len(eval)) | |
# Now I should have a list with the mean evaluation reward with the highest and lowest score tossed out | |
print(mean_eval_rewards) | |
print("num evals: " + str(len(mean_eval_rewards))) | |
# I'm dealing with a 2D array. Each element contains an array of ten data points | |
# The number of elements is going to vary for each training run | |
# The number of evaluation episodes will be constant, 10. | |
# I need to convert to a regular list first | |
# I could iterate over each element |