|
--- |
|
base_model: google/datagemma-rag-27b-it |
|
extra_gated_button_content: Acknowledge license |
|
extra_gated_heading: Access Gemma on Hugging Face |
|
extra_gated_prompt: "To access Gemma on Hugging Face, you\u2019re required to review\ |
|
\ and agree to Google\u2019s usage license. To do this, please ensure you\u2019\ |
|
re logged in to Hugging Face and click below. Requests are processed immediately." |
|
inference: false |
|
library_name: gguf |
|
license: gemma |
|
pipeline_tag: text-generation |
|
quantized_by: legraphista |
|
tags: |
|
- conversational |
|
- quantized |
|
- GGUF |
|
- quantization |
|
- imat |
|
- imatrix |
|
- static |
|
- 8bit |
|
- 6bit |
|
- 5bit |
|
- 4bit |
|
- 3bit |
|
- 2bit |
|
- 1bit |
|
--- |
|
|
|
# datagemma-rag-27b-it-IMat-GGUF |
|
_Llama.cpp imatrix quantization of google/datagemma-rag-27b-it_ |
|
|
|
Original Model: [google/datagemma-rag-27b-it](https://huggingface.co/google/datagemma-rag-27b-it) |
|
Original dtype: `BF16` (`bfloat16`) |
|
Quantized by: llama.cpp [b3735](https://github.com/ggerganov/llama.cpp/releases/tag/b3735) |
|
IMatrix dataset: [here](https://gist.githubusercontent.com/bartowski1182/eb213dccb3571f863da82e99418f81e8/raw/b2869d80f5c16fd7082594248e80144677736635/calibration_datav3.txt) |
|
|
|
- [Files](#files) |
|
- [IMatrix](#imatrix) |
|
- [Common Quants](#common-quants) |
|
- [All Quants](#all-quants) |
|
- [Downloading using huggingface-cli](#downloading-using-huggingface-cli) |
|
- [Inference](#inference) |
|
- [Simple chat template](#simple-chat-template) |
|
- [Llama.cpp](#llama-cpp) |
|
- [FAQ](#faq) |
|
- [Why is the IMatrix not applied everywhere?](#why-is-the-imatrix-not-applied-everywhere) |
|
- [How do I merge a split GGUF?](#how-do-i-merge-a-split-gguf) |
|
|
|
--- |
|
|
|
## Files |
|
|
|
### IMatrix |
|
Status: ✅ Available |
|
Link: [here](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/imatrix.dat) |
|
|
|
### Common Quants |
|
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split | |
|
| -------- | ---------- | --------- | ------ | ------------ | -------- | |
|
| [datagemma-rag-27b-it.Q8_0.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q8_0.gguf) | Q8_0 | 28.94GB | ✅ Available | ⚪ Static | 📦 No |
|
| [datagemma-rag-27b-it.Q6_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q6_K.gguf) | Q6_K | 22.34GB | ✅ Available | ⚪ Static | 📦 No |
|
| [datagemma-rag-27b-it.Q4_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q4_K.gguf) | Q4_K | 16.65GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| [datagemma-rag-27b-it.Q3_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q3_K.gguf) | Q3_K | 13.42GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| [datagemma-rag-27b-it.Q2_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q2_K.gguf) | Q2_K | 10.45GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
|
|
|
|
### All Quants |
|
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split | |
|
| -------- | ---------- | --------- | ------ | ------------ | -------- | |
|
| [datagemma-rag-27b-it.Q8_0.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q8_0.gguf) | Q8_0 | 28.94GB | ✅ Available | ⚪ Static | 📦 No |
|
| [datagemma-rag-27b-it.Q6_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q6_K.gguf) | Q6_K | 22.34GB | ✅ Available | ⚪ Static | 📦 No |
|
| [datagemma-rag-27b-it.Q5_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q5_K.gguf) | Q5_K | 19.41GB | ✅ Available | ⚪ Static | 📦 No |
|
| [datagemma-rag-27b-it.Q5_K_S.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q5_K_S.gguf) | Q5_K_S | 18.88GB | ✅ Available | ⚪ Static | 📦 No |
|
| [datagemma-rag-27b-it.Q4_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q4_K.gguf) | Q4_K | 16.65GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| [datagemma-rag-27b-it.Q4_K_S.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q4_K_S.gguf) | Q4_K_S | 15.74GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| [datagemma-rag-27b-it.IQ4_NL.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.IQ4_NL.gguf) | IQ4_NL | 15.63GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| datagemma-rag-27b-it.IQ4_XS | IQ4_XS | - | ⏳ Processing | 🟢 IMatrix | - |
|
| [datagemma-rag-27b-it.Q3_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q3_K.gguf) | Q3_K | 13.42GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| [datagemma-rag-27b-it.Q3_K_L.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q3_K_L.gguf) | Q3_K_L | 14.52GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| [datagemma-rag-27b-it.Q3_K_S.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q3_K_S.gguf) | Q3_K_S | 12.17GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| [datagemma-rag-27b-it.IQ3_M.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.IQ3_M.gguf) | IQ3_M | 12.45GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| datagemma-rag-27b-it.IQ3_S | IQ3_S | - | ⏳ Processing | 🟢 IMatrix | - |
|
| datagemma-rag-27b-it.IQ3_XS | IQ3_XS | - | ⏳ Processing | 🟢 IMatrix | - |
|
| datagemma-rag-27b-it.IQ3_XXS | IQ3_XXS | - | ⏳ Processing | 🟢 IMatrix | - |
|
| [datagemma-rag-27b-it.Q2_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q2_K.gguf) | Q2_K | 10.45GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| [datagemma-rag-27b-it.Q2_K_S.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q2_K_S.gguf) | Q2_K_S | 9.72GB | ✅ Available | 🟢 IMatrix | 📦 No |
|
| datagemma-rag-27b-it.IQ2_M | IQ2_M | - | ⏳ Processing | 🟢 IMatrix | - |
|
| datagemma-rag-27b-it.IQ2_S | IQ2_S | - | ⏳ Processing | 🟢 IMatrix | - |
|
| datagemma-rag-27b-it.IQ2_XS | IQ2_XS | - | ⏳ Processing | 🟢 IMatrix | - |
|
| datagemma-rag-27b-it.IQ2_XXS | IQ2_XXS | - | ⏳ Processing | 🟢 IMatrix | - |
|
| datagemma-rag-27b-it.IQ1_M | IQ1_M | - | ⏳ Processing | 🟢 IMatrix | - |
|
| datagemma-rag-27b-it.IQ1_S | IQ1_S | - | ⏳ Processing | 🟢 IMatrix | - |
|
|
|
|
|
## Downloading using huggingface-cli |
|
If you do not have hugginface-cli installed: |
|
``` |
|
pip install -U "huggingface_hub[cli]" |
|
``` |
|
Download the specific file you want: |
|
``` |
|
huggingface-cli download legraphista/datagemma-rag-27b-it-IMat-GGUF --include "datagemma-rag-27b-it.Q8_0.gguf" --local-dir ./ |
|
``` |
|
If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run: |
|
``` |
|
huggingface-cli download legraphista/datagemma-rag-27b-it-IMat-GGUF --include "datagemma-rag-27b-it.Q8_0/*" --local-dir ./ |
|
# see FAQ for merging GGUF's |
|
``` |
|
|
|
--- |
|
|
|
## Inference |
|
|
|
### Simple chat template |
|
``` |
|
<bos><start_of_turn>user |
|
{user_prompt}<end_of_turn> |
|
<start_of_turn>model |
|
{assistant_response}<end_of_turn> |
|
<start_of_turn>user |
|
{next_user_prompt}<end_of_turn> |
|
|
|
``` |
|
|
|
### Llama.cpp |
|
``` |
|
llama.cpp/main -m datagemma-rag-27b-it.Q8_0.gguf --color -i -p "prompt here (according to the chat template)" |
|
``` |
|
|
|
--- |
|
|
|
## FAQ |
|
|
|
### Why is the IMatrix not applied everywhere? |
|
According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results). |
|
|
|
### How do I merge a split GGUF? |
|
1. Make sure you have `gguf-split` available |
|
- To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases |
|
- Download the appropriate zip for your system from the latest release |
|
- Unzip the archive and you should be able to find `gguf-split` |
|
2. Locate your GGUF chunks folder (ex: `datagemma-rag-27b-it.Q8_0`) |
|
3. Run `gguf-split --merge datagemma-rag-27b-it.Q8_0/datagemma-rag-27b-it.Q8_0-00001-of-XXXXX.gguf datagemma-rag-27b-it.Q8_0.gguf` |
|
- Make sure to point `gguf-split` to the first chunk of the split. |
|
|
|
--- |
|
|
|
Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)! |