See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloom-560m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cbdc23557806936c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cbdc23557806936c_train_data.json
type:
field_input: reasoning
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: leixa/60c2cc57-dfdf-4ff2-9fb5-a693bd0c2e56
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 64
lora_dropout: 0.2
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 600
micro_batch_size: 8
mlflow_experiment_name: /tmp/cbdc23557806936c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 8ffede50-a098-493c-9010-608227506106
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8ffede50-a098-493c-9010-608227506106
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
60c2cc57-dfdf-4ff2-9fb5-a693bd0c2e56
This model is a fine-tuned version of bigscience/bloom-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8354
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 1.6533 |
4.4594 | 0.0263 | 50 | 1.2312 |
3.5482 | 0.0525 | 100 | 1.0903 |
3.5677 | 0.0788 | 150 | 1.0248 |
3.354 | 0.1050 | 200 | 0.9496 |
3.3464 | 0.1313 | 250 | 0.9209 |
3.0341 | 0.1575 | 300 | 0.8924 |
2.9129 | 0.1838 | 350 | 0.8728 |
3.03 | 0.2100 | 400 | 0.8525 |
2.7147 | 0.2363 | 450 | 0.8473 |
2.5675 | 0.2625 | 500 | 0.8376 |
2.5205 | 0.2888 | 550 | 0.8331 |
2.5702 | 0.3150 | 600 | 0.8354 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for leixa/60c2cc57-dfdf-4ff2-9fb5-a693bd0c2e56
Base model
bigscience/bloom-560m