leixa's picture
End of training
f5bdd1d verified
metadata
library_name: peft
base_model: Xenova/tiny-random-Phi3ForCausalLM
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: 662786b1-6fcd-44b8-9209-026c1769b0a9
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Xenova/tiny-random-Phi3ForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 82b88b9f06b02c24_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/82b88b9f06b02c24_train_data.json
  type:
    field_instruction: instruction
    field_output: response
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/662786b1-6fcd-44b8-9209-026c1769b0a9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mlflow_experiment_name: /tmp/82b88b9f06b02c24_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 662786b1-6fcd-44b8-9209-026c1769b0a9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 662786b1-6fcd-44b8-9209-026c1769b0a9
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

662786b1-6fcd-44b8-9209-026c1769b0a9

This model is a fine-tuned version of Xenova/tiny-random-Phi3ForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 150

Training results

Training Loss Epoch Step Validation Loss
No log 0.0001 1 nan
0.0 0.0015 13 nan
0.0 0.0030 26 nan
0.0 0.0046 39 nan
0.0 0.0061 52 nan
0.0 0.0076 65 nan
0.0 0.0091 78 nan
0.0 0.0106 91 nan
0.0 0.0121 104 nan
0.0 0.0137 117 nan
0.0 0.0152 130 nan
0.0 0.0167 143 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1