See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen1.5-0.5B-Chat
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b38b9d3a1551c71d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b38b9d3a1551c71d_train_data.json
type:
field_instruction: pt
field_output: vmw
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/85fddd35-46cd-43ac-9700-55395a4f0703
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/b38b9d3a1551c71d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 85fddd35-46cd-43ac-9700-55395a4f0703
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 85fddd35-46cd-43ac-9700-55395a4f0703
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
85fddd35-46cd-43ac-9700-55395a4f0703
This model is a fine-tuned version of Qwen/Qwen1.5-0.5B-Chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.7726
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0186 | 1 | 7.1221 |
6.2763 | 0.1674 | 9 | 5.9018 |
5.2322 | 0.3349 | 18 | 5.0585 |
4.6 | 0.5023 | 27 | 4.6171 |
4.3017 | 0.6698 | 36 | 4.3168 |
4.0419 | 0.8372 | 45 | 4.1112 |
4.5154 | 1.0093 | 54 | 3.9870 |
3.8323 | 1.1767 | 63 | 3.9053 |
3.5854 | 1.3442 | 72 | 3.8268 |
3.8804 | 1.5116 | 81 | 3.7939 |
3.6054 | 1.6791 | 90 | 3.7757 |
3.5648 | 1.8465 | 99 | 3.7726 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 47
Model tree for leixa/85fddd35-46cd-43ac-9700-55395a4f0703
Base model
Qwen/Qwen1.5-0.5B-Chat