See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-3B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cd2ead58134fa71e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cd2ead58134fa71e_train_data.json
type:
field_instruction: source
field_output: target
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/8eb4e6a5-880e-4f48-9111-f40e680e09d6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 400
micro_batch_size: 8
mlflow_experiment_name: /tmp/cd2ead58134fa71e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 1559d98e-1fed-41c2-8ba2-72b6489efca4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1559d98e-1fed-41c2-8ba2-72b6489efca4
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
8eb4e6a5-880e-4f48-9111-f40e680e09d6
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2570
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 48
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0635 | 1 | 3.2401 |
3.3845 | 0.2540 | 4 | 3.2368 |
3.4292 | 0.5079 | 8 | 3.1689 |
3.2086 | 0.7619 | 12 | 3.0258 |
3.0636 | 1.0159 | 16 | 2.8569 |
3.2533 | 1.2698 | 20 | 2.6761 |
2.8791 | 1.5238 | 24 | 2.5150 |
2.6836 | 1.7778 | 28 | 2.4281 |
2.4894 | 2.0317 | 32 | 2.3637 |
2.4505 | 2.2857 | 36 | 2.3096 |
2.2966 | 2.5397 | 40 | 2.2766 |
2.3388 | 2.7937 | 44 | 2.2585 |
2.406 | 3.0476 | 48 | 2.2570 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2