See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 66aa7d57cbb187af_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/66aa7d57cbb187af_train_data.json
type:
field_input: transcription
field_instruction: glosses
field_output: translation
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: leixa/e15bb719-ea8f-46ea-8290-e5573063df0e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/66aa7d57cbb187af_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: e15bb719-ea8f-46ea-8290-e5573063df0e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e15bb719-ea8f-46ea-8290-e5573063df0e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
e15bb719-ea8f-46ea-8290-e5573063df0e
This model is a fine-tuned version of Orenguteng/Llama-3-8B-Lexi-Uncensored on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0033 | 1 | 6.0460 |
1.7595 | 0.1368 | 42 | 1.7991 |
1.5434 | 0.2736 | 84 | 1.6323 |
1.376 | 0.4104 | 126 | 1.5375 |
1.4669 | 0.5472 | 168 | 1.4719 |
1.2662 | 0.6840 | 210 | 1.3924 |
1.3146 | 0.8208 | 252 | 1.3527 |
1.0922 | 0.9577 | 294 | 1.2961 |
0.7865 | 1.0945 | 336 | 1.3442 |
0.705 | 1.2313 | 378 | 1.3148 |
0.8594 | 1.3681 | 420 | 1.3078 |
0.7819 | 1.5049 | 462 | 1.3047 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 23
Model tree for leixa/e15bb719-ea8f-46ea-8290-e5573063df0e
Base model
Orenguteng/Llama-3-8B-Lexi-Uncensored