bert-question-ner

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3300
  • Precision: 0.7339
  • Recall: 0.7477
  • F1: 0.7407
  • Accuracy: 0.9154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.4
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 68 1.5591 0.0203 0.0187 0.0195 0.6473
No log 2.0 136 0.8601 0.8333 0.0467 0.0885 0.7313
No log 3.0 204 0.5763 0.4365 0.3692 0.4 0.8133
No log 4.0 272 0.4647 0.5294 0.5888 0.5575 0.8650
No log 5.0 340 0.3700 0.5935 0.6822 0.6348 0.8960
No log 6.0 408 0.3458 0.6872 0.7290 0.7075 0.9050
No log 7.0 476 0.3007 0.7207 0.7477 0.7339 0.9134
0.7147 8.0 544 0.3036 0.7302 0.7336 0.7319 0.9109
0.7147 9.0 612 0.2997 0.7260 0.7430 0.7344 0.9160
0.7147 10.0 680 0.3247 0.6964 0.7290 0.7123 0.9141
0.7147 11.0 748 0.3300 0.7339 0.7477 0.7407 0.9154
0.7147 12.0 816 0.3582 0.7162 0.7430 0.7294 0.9154
0.7147 13.0 884 0.3702 0.7281 0.7383 0.7332 0.9154

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lekhnathrijal/bert-question-ner

Finetuned
(2372)
this model