LLIMONIIE: Large Language Instructed Model for Open Named Italian Information Extraction

LLIMONIE generalizes IE across diverse domains without requiring input ontologies.

  • Perform three tasks:
    • Open Named Entity Recognition

    • Open Relation Extraction

    • Joint Entity and Relation Extraction

πŸ’» Quick Start

Setup conda environment

Install the unsloth package following the repo guide

Clone the repository

git clone https://github.com/leonardoPiano/LLIMONIE.git

Run the generation

from PromptTemplates.instruct_prompt_templates import  NER,RE,JOINT
from LLM.Unsloth import UnslothLLM
model_path="leopiano98/LLIMONIIE_llama3-8b"

llimonie=UnslothLLM(model_path,inference=True)
task=NER
text="Alessandro Manzoni Γ¨ considerato uno dei maggiori romanzieri italiani di tutti i tempi per il suo celebre romanzo I promessi sposi"
messages = [{"role": "system", "content": task},
                        {"role": "user", "content": text}]
output= llimonie.generate(messages, max_new_tokens=512)
#output: Alessandro Manzoni[Writer|Person]; I promessi sposi[Novel|Book]; italiani[Nationality|Ethnicity] 
  • Developed by: leopiano98
  • License: apache-2.0
  • Finetuned from model : unsloth/llama-3-8b-instruct-bnb-4bit

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
6
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for leopiano98/LLIMONIIE_llama3-8b

Quantizations
2 models