See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: EleutherAI/gpt-neo-1.3B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e5625f7766855655_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e5625f7766855655_train_data.json
type:
field_instruction: chat
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lesso01/73c9a480-6cd8-4b85-a9fa-617a0e5d5d04
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/e5625f7766855655_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 10
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_cache: false
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6bb1ae2c-eec7-426b-8297-d030ba828c03
wandb_project: 01a
wandb_run: your_name
wandb_runid: 6bb1ae2c-eec7-426b-8297-d030ba828c03
warmup_steps: 50
weight_decay: 0.01
xformers_attention: true
73c9a480-6cd8-4b85-a9fa-617a0e5d5d04
This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0227
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 10
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 0.7158 |
1.524 | 0.0037 | 50 | 0.2782 |
0.2272 | 0.0075 | 100 | 0.0497 |
0.1651 | 0.0112 | 150 | 0.0370 |
0.1321 | 0.0149 | 200 | 0.0310 |
0.0987 | 0.0187 | 250 | 0.0277 |
0.0958 | 0.0224 | 300 | 0.0252 |
0.0943 | 0.0262 | 350 | 0.0237 |
0.107 | 0.0299 | 400 | 0.0230 |
0.0966 | 0.0336 | 450 | 0.0228 |
0.0787 | 0.0374 | 500 | 0.0227 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso01/73c9a480-6cd8-4b85-a9fa-617a0e5d5d04
Base model
EleutherAI/gpt-neo-1.3B